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Abstract: Effective management of dairy farms requires an accurate prediction of pasture biomass.

Generally, estimation of pasture biomass requires site-specific data, or often perfect world assump-

tions to model prediction systems when field measurements or other sensory inputs are unavailable.

However, for small enterprises, regular measurements of site-specific data are often inconceivable.

In this study, we approach the estimation of pasture biomass by predicting sward heights across

the field. A convolution based sequential architecture is proposed for pasture height predictions

using deep learning. We develop a process to create synthetic datasets that simulate the evolution

of pasture growth over a period of 30 years. The deep learning based pasture prediction model

(DeepPaSTL) is trained on this dataset while learning the spatiotemporal characteristics of pasture

growth. The architecture purely learns from the trends in pasture growth through available spatial

measurements and is agnostic to any site-specific data, or climatic conditions, such as temperature,

precipitation, or soil condition. Our model performs within a 12% error margin even during the

periods with the largest pasture growth dynamics. The study demonstrates the potential scalability

of the architecture to predict any pasture size through a quantization approach during prediction.

Results suggest that the DeepPaSTL model represents a useful tool for predicting pasture growth

both for short and long horizon predictions, even with missing or irregular historical measurements.

Keywords: agriculture; convolution neural network; prediction; remote sensing; recurrent sequence;

biomass; yield; crop; remote sensing; LIDAR

1. Introduction

Pasture lands provide an extensive ecosystem for grazing, maintaining plant and
animal biodiversity, and regulating soil erosion [1]. Furthermore, pasture lands are arguably
one of the primary and cheapest sources of livestock feed, particularly where agricultural
enterprises are not feasible [2]. The profitability of a pasture-dairy based farm heavily
depends on maximizing utilization of pastures, where feed availability for livestock can
vary as widely as 50% [3–5]. The inherent spatial and temporal dependencies of pasture
growth lead to high uncertainty in estimates for sward height data, especially when
grasslands cannot be monitored with labor-intensive traditional methods. This problem
is essential as incorrect estimates result in wastage in areas with high forage availability
and underfeeding of livestock at low forage availability [4]. Monitoring pasture growth
with Unmanned Aerial Vehicles (UAVs) (e.g., [3]) and subsequently coupling with robot
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planning algorithms (e.g., [6–13]) can yield decisions for pasture feed allocation to maximize
profitability. However, the deployment of these remote sensing UAVs and the subsequent
time to process and interpret the data consumes valuable resources that may hinder timely
decision-making for daily feed allocation.

Traditional numerical methods for prediction models of pastures have been pro-
posed to help alleviate the problem of regular field measurements. They rely either on a
perfect model of the site with extensive inputs such as soil conditions, crop physiology,
and reproduction or rely on simplified measurements of site-specific data to generate yield
predictions [14,15]. More significantly, even when site-specific data are available to either
process-based models, it is an uphill battle to calibrate the models due to uncertainty
in the parameters. Prior methods generally ignored the uncertainty in the data inputs
and empirically calibrated their models with ground truth observations. However, when
uncertainties in parameter values are considered, this uncertainty translated to large errors
in scenarios where these parameters did not lie in the initial calibrated distribution [15].

In contrast, time series prediction techniques based on statistical models or machine
learning are capable of learning not only through a generic set of model parameters or
field measurements such as temperature changes, soil conditions or precipitation, but also
capable of being agnostic to these data inputs by learning these features implicitly from
historical pasture data [5,16–21]. The flexibility offered by these algorithms opens up a
tremendous opportunity to support decision-making systems for agricultural prediction
and planning tools even with sparse data and measurements. Statistical models generally
rely on either time-series regression models, through spatial correlation, or through a
combination of spatio-temporal variations. One advantage of statistical models is their
inherent capability to assess model uncertainties, which machine learning models need to
be adapted to specifically to capture these uncertainties. Despite the caveats to the added
complexity from machine learning methods, they have limited reliance on site-specific
data, allow a transparent assessment of parameter uncertainties, and have been shown
to be surprisingly effective across various domains (e.g., in multi-robot systems [22,23]).
For example, if a Bayesian Learning [24] is employed for a neural network based prediction
model, the predictions would reflect a wider confidence interval if the model cannot
adequately represent future pasture yield given its history and if available site-specific
data. However, the current methods are generally focused on predicting pasture yields
and cannot adequately address the issue of predicting pasture maps or specifically the
individual sward heights across the complete fields of variable sizes, especially for long
horizon predictions [15] or large pastures with variable size.

To address this issue, we utilize tools from recent advances in computer vision tech-
niques, especially convolution neural networks (CNNs) [25,26] that have provided excellent
results in long-term frame predictions for video sequences [27–30] and are also quite suc-
cessfully used to capture intricate features of images or video frames [31–37]. The main
advantage of deep learning models specifically based on CNNs is their capability to con-
sider a map of historical sward heights in a field as an input sequence and predict the future
map of sward heights of the pasture. With a well-designed neural network, and sufficient
sward height data for training, the model has the capacity to provide useful insights on
how to solve this complex and dynamic spatiotemporal problem. Encoder–Decoder mod-
els based on Convolutional Long Short-Term Memory (ConvLSTM) [34] models provide
a general framework for spatiotemporal sequence-to-sequence learning problems. This
is achieved by training connected ConvLSTMs that encode patterns within the histori-
cal observations and then unfold them to perform multi-step predictions of the future
pasture terrains.

As a step towards the overall goal of predicting the pastureland environments, we pro-
pose a novel deep learning architecture, Deep Pasture Spatio-Temporal Learning (DeepPaSTL)
that not only predicts the sward height data of pastures with high accuracy, but also pro-
vides a computationally efficient model of determining its prediction uncertainty. The pro-
posed methodology reduces the burden of field measurements of the pasturelands by
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potentially reducing the frequency of measurements for areas that the DeepPasTL predicts
with high certainty. For training, we create a new dataset that is generated from 30 years
of historical data through a dynamic Gaussian mixture model (GMM), and evaluation
is done both on a synthetic dataset derived from the simulated data and also from 3D
modeled grass pastures in Gazebo [38]. The aim of this paper is not just an evaluation of
deep learning performance but to introduce a new direction for prediction-based systems
on spatiotemporal evolution of pasture environments.

2. Materials and Methods

2.1. Problem Formulation

The goal of our study is to learn and predict the evolution of pasture growths through
previously observed field measurements of sward heights. By applying a novel deep
learning methodology to this problem, we forecast the future sward height maps of a
variable length time horizon. Generally, in the real world, field measurements of pastures
are performed every few days. Estimating the future of sward heights or, more generally,
understanding how the pasture terrain evolves based on these historical measurements is of
utmost importance to plan grazing activity or allocate resources for field measurements in
the future, especially when predictions can be uncertain. This problem can be regarded as
spatiotemporal sequence forecasting and can be solved through the sequence-to-sequence
learning [39] within the domain of deep learning.

To enable training of the prediction network, we generate a synthetic dataset Z
of dynamic 2D maps of pastures simulating grass growth over time based on publicly
available historical pasture yield data, as described in Section 2.2. To this end, we consider
the sward heights of pastures as an evolving 3D spatiotemporal process. Formally, we can
now define the pasture terrain prediction as, given a periodically observed data Z1,...,Lin

,
where Zi ∈ Z , denotes the sward height measurements of the field in an N × N grid,
Zi ∈ R

N×N , the goal is to predict the most likely Lout sequences, ZLin+1, . . . , ZLin+Lout
,

given the previous Lin sequences of sward heights,

ZLin+1, . . . , ZLin+Lout
= arg max

ẐLin+1,...,ẐLin+Lout

p(ẐLin+1, . . . , ẐLin+Lout
|Z1, . . . , ZLin

). (1)

Moreover, we also compare the accuracy of the results when the model training
and inference are adapted with an Approximate Bayesian Learning with Markov Chain
Monte Carlo (MCMC) [40] sampling to enable prediction of sward heights with uncertainty
estimates as described in Section 2.6.

2.2. Simulated Spatiotemporal Dataset

We utilize the historical pasture data generated using Agri-cultural Production Sys-
tems sIMulator (APSIM) Next Generation’s modules. Three sites in Iowa were selected in
APSIM’s Met module from 1979 to 2013 [41]. Site-specific parameters such as rain, tem-
perature, day length, solar radiation, snowfall, and atmospheric pressure were considered
from the dataset. We use mixed, fine loamy, superactive, mesic Hapludolls soil [41] avail-
able in APSIM’s module and also common in Iowa to generate average pasture heights,
and the SoilOM module was set to 1000 kg/ha initial surface residue. APSIM’s tall fescue
AgPasture module was used for modeling forage species [42] with the following param-
eters: initial values for belowground, aboveground biomass are set to 1000 kg/ha and
3000 kg/ha, with a rooting depth of 1m. NO3-N was used for fertilizer application with a
bi-yearly schedule of 84 kg N/ha on the first day of January and August. Since we simulate
an ungrazed pasture, we disable APSIM’s grazing module, and an average pasture height
is generated through the above parameters as shown in Figure 1a.
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Figure 1. (a) Average pasture height and (b) mean and standard deviation of the 30 years of historical data across three sites

in Iowa from APSIMs Met module are shown for each day of the year.

To generate a 2D map of pasture environments, an evolving process of pastures is
simulated through a Gaussian Mixture Model (GMM) (inspired by works in our eventual
application domain of multi-robot systems, such as [6,7,9,43–46]). The dynamic GMM
process is defined as,

Zt(x, y) =
K

∑
j=1

wj(t)gj(x, y) = wT(t)g(x, y),

where (x, y) ∈ R
2 is the 2D coordinates of the pasture, wj(t) ∈ R

1 is the weight associated

with each basis function gj(x, y) ∈ R
1 for the corresponding location (x, y) and time t, K is

the number of basis functions, and Zt ∈ R
2 is the height of the pasture at location (x, y) at

time t. The basis function is then defined as

gj(x, y) = exp

(

−

(

(x, y)− (kx,j, ky,j)
2
)

2l2
j

)

,

where lj is the length scale, and (kx,j, ky,j) ∈ R
2 is the corresponding jth basis of the function

gi(x, y). The dynamics of each weight wj are modeled using random walk (1D) across
different time steps t.

Finally, a pasture field is generated and mapped to a 10 m × 10 m area. In or-
der to match the rate of growth of sward heights from the historical data, Figure 1b,
we add a bias to the results Zt(x, y) ← Zt(x, y) + mt − Z̄t, where mt, Z̄t is the mean
of the historical and simulated pasture heights, respectively. Additionally, a truncated
Gaussian noise σ(0, 1) is added to further match real-world measurements of sward
heights. These steps are repeated for all days in 30 years of data and a synthetic dataset
Z = {Zt|t = 0, . . . T} ∈ R

100×100 of 2D pasture sward heights is generated, which corre-
lates to 100 point measurements per m2, and T is the total number of days in the historical
dataset of 30 years from APSIM’s Met module.

2.3. Pasture Construction for Evaluation

In order to reconstruct pasture environments similar to the real-world, as part of this
study, we develop five different types of 3D grass models using the Gazebo simulation
and design tool, [38], Figure 2. A 10 m × 10 m patch is then generated in Gazebo and
populated with these 3D grass models with a density of 250 grass models/m2. To reduce
computational requirements, we split the Gazebo model in 2 m × 2 m patches. Grass
heights are modulated by re-scaling the model size to fit the approximate heights in the
simulated dataset given by Z . In order to simulate field measurements by UAV, we equip
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the standard hector quad-copter available in Gazebo with LIDAR and measure the point
clouds over the pasture Figure 3a. Standard crop box filters in Gazebo are utilized to
remove noise from the LIDAR measurements, and the height of the sward heights is mea-
sured with respect to the ground plane of the model, i.e., the perimeter of the pasture.
Raw measurements Figure 3b of the point cloud data are not particularly suited for neural
networks due to a large noise floor for each coordinate in the map. To ease the prediction
for the neural network, we process the raw point cloud through a median and flat convo-
lution filter with a kernel size of 3× 3 effectively smoothing the surface to a large degree
Figure 3c. Due to the large computational time required to generate simulated pastures
in Gazebo, we limit our 3D pasture models to 30 samples of 100 m× 100 m within the
following time period: 01 April 2019 to 26 July 2019. The selected time period has the
highest pasture growth in our simulated dataset Figure 1b and is indicative of a difficult
prediction problem for the DeepPaSTL architecture due to its heavy fluctuations of the
sward height measurements.

Figure 2. Grass models generated in Gazebo to populate the pasture terrain.

(a)

60

80

100

120

140

(b)

60

80

100

120

140

(c)

Figure 3. (a) Gazebo point cloud surface as measured in Gazebo with a hector quad-copter equipped

with LIDAR; (b) raw measurements (mm) on the Gazebo point cloud in (a) in a contour plot;

(c) processed (filtered) measurements (mm) adapted for neural network predictions.

2.4. Data Processing for Training and Inference

First, in order to accommodate a truly scalable solution that is agnostic to the spatial
dimensions of the pasture prediction problem, we train our model to predict on quantized
patches of pastures and stitch the final prediction together. This methodology allows the
model to accommodate varying pasture sizes for long-term predicts. Additionally, several
other processing steps on the dataset are performed to improve the performance of the
prediction model as described below:

• The use of convolution neural networks in deep learning introduces an unintended
side effect popularly termed as boundary effects [47,48], where artifacts are introduced
at the boundaries of the image due to no spatial information [49,50] available when
CNN filters pass over boundaries of the image. We circumvent this issue by enlarging
each image with size δ ≤ 100, pixels through mirror padding [51] to add spatial
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information on the boundaries of each pasture image in the dataset Z ∈ R
100×100

updating our new training dataset to Znew ∈ R
100+δ×100+δ.

• Training and inference of the neural network on original dimensions of the training
datasetZnew may potentially increase accuracy. However, it severely limits the capabil-
ity of the neural network to adapt to variable input dimensions while also increasing
computational requirements as GPU memory is a limited resource, specifically when
training inputs with large dimensions. To this end, we quantize the training data
Znew ∈ R

100+δ×100+δ into smaller sized patches of Zq ∈ R
δ×δ with an overlap of 50%

between them. The overlapping of the images and subsequent reconstruction of the
image post inference through a weighted average allows us to mitigate boundary
effects between each cropped frame, an undesirable artifact of CNN output that would
occur if they were to be naively cropped without any overlaps. This methodology
requires the neural network to only learn over small patches of the field and can be
practically used to predict field sizes of any size N × N, as long as the original image
is appropriately processed to meet the input size of δ× δ, where N ≥ δ.

• We fix the sequence length of the training inputs and output prediction to trajectories
of time Lin, Lout = 15. The final input training set is then defined as input sequences
of Zin =

{

Z i
in|i = 1, . . . , τ − Lin − Lout

}

, where τ is the number of data points in
the quantized dataset Zq. Each individual sequence for the backward propagation

is Z i
in =

{

Zi
q, . . . , Z

i+Lin
q

}

, where Z i
in ∈ R

δ×δ. Similarly, the target values dataset

Y =
{

Y i|i = 1, . . . , τ − Lin − Lout

}

is created for training. Each input sequence Z i
in

has a corresponding target value Y i
out =

{

Y
i+1+Lin
q , . . . , Y

i+1+Lin+Lout
q

}

∈ R
δ×δ, where

Y
j
q = Z

j
q.

2.5. Deep Learning Model for Long-Term Prediction

The choice of our architecture Figure 4 is primarily motivated by our goal of spa-
tiotemporal learning. Recently, ConvLSTMs [34] have shown remarkable progress in
learning representations and future frame predictions of video sequences, precipitation
nowcasting, and also for classification problems of deforestation. A ConvLSTM can be
simply defined as an LSTM recurrent network [52], with convolution operations replac-
ing the matrix multiplication within an LSTM network as shown in Equation (2). LSTM
networks are designed to process temporal dependencies by propagating its hidden state
across time [33,39,52–58], or more simply, they transfer an aggregated history to allow
future predictions to take advantage of the past. Similarly, the emergence of ConvLSTM
is motivated by taking advantage of the temporal dependence of LSTMs and extending
it as a spatiotemporal representation, making it an excellent choice for our application.
The ConvLSTM architecture is defined as

it = σ(Wxi ∗Ut + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi),

ft = σ(Wx f ∗Ut + Wh f ∗Ut−1 + Wc f ◦ Ct−1 + b f ),

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗Ut + Whc ∗ Ht−1 + bc),

ot = σ(Wxo ∗Ut + Who ∗ Ht−1 + Wco ◦ Ct + bo),

Ht = ot ◦ tanh(Ct),

(2)

where Ut ∈ R
1×d×d is an input to the ConvLSTM layer, (H1, . . . , Ht) ∈ R

1×d×d, (C1, . . . Ct) ∈
R

1×d×d are the hidden and cell states of the ConvLSTM cell, and it, ft, ot ∈ R
1×d×d are

the interaction, forget, and output gates similar to an LSTM cell. The gates control the
integration of information from the past and the present data to the next timestep. ∗ is the
convolution operation, and ◦ is the Hadamard Product [59].
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Conv 3*3 LeakyRelu BiConvLSTM Encoder

ConvLSTM Decoder

Process inputs over time T

Concatenate

Residual Connection UpConv 3*3

32 x 32

16      16

64          64

32         32      32

32 x 32

32           32

128   128          128  

64     64           64

32 32 32 32

64 64 64 64

128 128 128 128

2*2 MaxPool Copy Hidden State

32      1

Sum

Figure 4. Encoder–decoder architecture with ConvLSTM and residual connections (example for 32× 32 pixels in the lowest

resolution). The encoder consists of the two initial 2D convolution layers that extract the initial features of the input.

Subsequently, the BiConvLSTM encoders are deployed to learn the forward and backward correlations over these extracted

features of the input sequence. The ConvLSTM decoder then recursively unwraps the hidden features encoded in the

hidden state of the encoder, and the 2D convolution layers map it to output predictions. The number of feature maps of

each CNN layer is denoted above their respective blocks.

In order to generate multi-step predictions, our architecture should be capable of
identifying the underlying temporal patterns of available historical pasture growth Lin,
and more so the spatial correlation within the pasture before generating predictions. To cap-
ture this spatiotemporal history, we introduce an encoder similar to the original ConvLSTM
for precipitation nowcasting through radar data. However, we employ the use of Bi-
ConvLSTM networks [60] similar to Bi-LSTMs [61], where we run two separate ConvLSTM
networks each in the forward (i → i + Lin) and reverse (i + Lin → i) direction of the
input sequence. By learning the bi-direction temporal dependencies of pasture growth, we
enable our model to achieve a better representation of time-series data. The hidden states
of the ConvLSTM networks are then merged with a CNN operation at each timestep before

being fed to the subsequent networks, Ht = f bi(H
f
t , Hb

t ), where f bi is a CNN layer, and

H
f
t , Hb

t are the hidden states at time t of the ConvLSTM encoder in the forward and reverse
direction, respectively. The encoder recursively parses the spatiotemporal information in
the input sequence and generates an aggregated hidden representation in the final step,
which is then used as a basis for forecasting future growth. This approach allows our
network to generate richer representations specifically for learning the trends in sward
height growth by encoding the history of pasture dynamics through the encoder.

A decoder framework is then implemented to enable the reconstruction of future
predictions based on the aggregated historical hidden representations of the encoder. Since
we do not have information for future time steps, we only use ConvLSTM networks
processing the output sequence in the forward direction. The decoders copy the last hidden
state of the encoder networks as their own initial state. The decoder utilizes its own output
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states as an input for future timesteps along with the hidden states of the encoder to
recursively generate predictions for pasture heights.

Finally, to increase the representational power of the DeepPaSTL architecture, we use
CNNs to pre-encode the inputs before feeding the recurrent encoder–decoder networks.
Similarly, the outputs of the encoder–decoder are also parsed through CNNs to generate
the final prediction. We implement the encoder–decoder framework across three spatial
resolutions by down-sampling them by a factor of 2 with MaxPool layers [62] to allow the
network to learn dependencies at different spatial representations, akin to the ubiquitous
U-Net CNN framework [63]. Similar to [34], we use two sets of BiConvLSTM for each
encoder and similarly two ConvLSTM decoders to independently learn the concept of
distance and correlation within its neighborhood [64]. The representations at different
spatial resolutions are finally merged together by up-sampling through CNNs. In order to
improve training time, performance and negate the problem of vanishing gradients during
training, we employ the use of residual connection [65–68], and batch normalization [69].
Residual connections from the pre-encoding to the post-encoding layers also help the
network recreate the spatial context of the original images.

2.6. Uncertainty Estimation of the Model

Standard deep learning models that are trained through supervised learning do not
estimate the uncertainty in its prediction. However, the paradigm of Bayesian Neural
Networks (BNN) [24] enables the neural networks to estimate uncertainty in their outputs
by evaluating the posterior distribution over its network weights. However, to model a
large BNN, especially with the representational power required to forecast pasture growth,
makes them computationally prohibitive. This is due to the fact that a full posterior
distribution over the parameters of the neural network needs to be computed for each
forward and backward pass. Recently, a computationally efficient method of approximating
Bayesian inference [24] with the use of dropouts [40] was proposed. The key idea was
to perform Markov Chain Monte Carlo (MCMC) sampling of the network parameters
to generate stochastic inference of the network only in the forward pass. Dropouts in
deep learning are more popularly used only during training to remove randomly sampled
nodes from each layer l with a fixed probability pl , to reduce overfitting and increase the
robustness of the network by allowing each node to learn redundant and independent
representations. However, Ref. [40] shows that introducing dropouts during inference
enables the model to estimate uncertainty in its output. We utilize the approximate
Bayesian inference in our model by introducing dropouts between each layer preceding
the final output layer with pl = 0.4, and generate 500 samples of stochastic inference before
estimating the average for the final prediction.

2.7. Experiment Details

In a brief comparison of different inputs of patch sizes, δ is used to compare the
accuracy of the architecture as input size increases. The main limitation of the patch size is
attributed to the limited GPU memory (VRAM) available for training. The input sizes can be
increased as large as the available system capacity allows, although through our empirical
evaluations, we observe that lower input sizes had better performance. Since it is quite
unlikely that field measurements of pastures are available for every consecutive day, we
compare results when the input observations are split apart every few days, i.e., s = {1, 2, 4}
time intervals between each input in the sequence. Additionally, having a larger s increases
the effective time horizon of prediction, for example, for s = 4 and Lout = 15, and
the model predicts 60 days into the future where every step is a progression of 4 days. We
also perform comparisons to identify the architecture’s adaptability to missing data by
performing imputation, wherein mean data are added between missing observations in
the case of s = {2, 4}. This helps simulate cases where field measurements might not be
available due to severe weather conditions or resource constraints, and observe that the
prediction model performs sufficiently well under these cases. To verify the effectiveness
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of the DeepPaSTL architecture, we evaluate our trained model on the simulated dataset
in Section 2.2 and on 3D simulation of pasture environments in Gazebo with point cloud
measurements as described in Section 2.3.

2.8. Model Training and Evaluation

Training and inference are performed for an input and output sequence of 15 steps,
each using back-propagation through time (BPTT). However, it is to be noted that, due to
the dynamic encoder–decoder framework, the architecture can use a variable sequence
length during inference.The complete training and evaluation process is shown in Figure 5.

Avg. Pasture Height

Inference Process

Training Process

GMM Prediction

Noise Removal LIDAR Prediction

Neural Network

Figure 5. Process for training and inference of DeepPaSTL. Synthetic training datasets are created using GMM models

based on the average pasture heights of Iowa sites. Real world field measurements can be obtained by using LIDAR point

cloud measurements. The point cloud data are then processed to smooth out sensor noise and then DeepPaSTL is used to

predict future pasture heights.

All models are trained with mean square error loss (MSE). Training is stopped when
the validation loss does not improve for 10 consecutive epochs. Learning rates were
individually tuned for each network by calculating the steepest gradient on a small sample
dataset, although they usually were set to 3.5× 10−4. To test the model performance, we
use the last two years of data (2008, 2009) for all evaluations in this study. The models are
trained on 2x AMD Epyc 7742 CPUs and 8x Nvidia RTX 6000 GPUs with PyTorch as its
back-end. Training time is generally 15 to 20 h for 30 epochs.

We evaluate the performance of our architecture with the following metrics: Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and average standard deviation of all predictions (aSt. Dev.), defined as
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where B is the number of output sequences, Yi is the ground truth, and Ŷi is the final
prediction of the neural network after post-processing as described in Section 2.4.

3. Results

A comparison of the DeepPaSTL architecture over different spatial input sizes is
performed on 3D pastures generated in Gazebo to understand the impact of quantization
and spatial learning of the architecture. We then run our model for different observation
or input intervals, s, to evaluate temporal dependencies. Additionally, we study how
the imputation of missing data can impact the accuracy of the architecture when field
measurements of the pastures are not available on a daily basis. Training losses are
reported in Figure 6. Through our experimental results conducted both on the simulated
data from GMM and the 3D pastures from Gazebo, we observe the following:

• DeepPaSTL predictions perform within a 15% error rate for long horizon predictions
up to 60 days in the future, and approximately with a 5% error rate for predictions
closer to its historical data.

• Allowing the model to have regular observations, i.e., with smaller intervals, is
essential for capturing large dynamic changes in the pasture growth.

• DeepPaSTL prediction uncertainty increases as the volatility in pasture growth in-
creases.

• We show that DeepPaSTL has the capacity to predict and generate future pasture
terrains that replicate the growth and surface characteristics of ground truth data.

3.1. Effect of Input Quantization

We first compare the effect of the input quantization for interval s = 4 and δ = {32, 64}
with uncertainty estimates as described in Section 2.6. The predicted sward heights for
models trained with δ = 64 showed a slightly lower variability as compared to the smaller
spatial size of the inputs with δ = 32. This larger variance in uncertainty for lower
quantization is to be expected as the model has access to less spatial information. However,
we do observe that, for the initial time horizon, the lower quantization δ = 32 significantly
outperforms the larger δ = 64, Figure 7, while, as the number of steps in the output
prediction increases, the error rates for δ = {64, 32} are relatively similar. This is mainly
attributed to the fact that the model with large spatial representations has an inherent
advantage to perform better in a time period with fast-moving pasture dynamics, due to its
extended capacity to learn spatial correlations of the evolving field. However, increasing
the spatial size of the architecture makes it harder to train the network effectively to predict
changes in the pasture. Pasture maps for the error Yi − Ŷi and uncertainty in its prediction
are shown in Figures 7. Through our empirical evaluations, we observe that the lower
quantization of spatial inputs significantly outperformed, Table 1 and Figure 7, and larger
spatial input sizes, especially during the first half of the prediction horizon. This can be
also be observed in the 3D Gazebo point cloud predictions where pasture growth rates
were the highest for the initial time horizon, Figures 8a and 9–11. Therefore, we use δ = 32
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for all future experiments, as the model can always update its predictions over time with
new field measurements.

0 10 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Loss

Train: 64x64 s=4
Validation: 64x64 s=4
Train: 32x32 s=4
Validation: 32x32 s=4
Training: 32x32 s=2
Validation: 32x32 s=2
Train: 32x32 s=1
Validation: 32x32 s=1

Training metrics

 Training Epoch 

 L
os

s 
Va

lu
es

 

Figure 6. Training and Validation (MSE) Losses for 30 epochs for models trained with δ = 64, s = 4

and δ = 32, s = {1, 2, 4}. We observe that the loss rates are correlated to the observation intervals for

input sequence. This is attributed to the fact that the architecture’s prediction performance is heavily

dependent on recognizing temporal patterns in pasture growth due to the highly dynamic nature of

pasture evolution.
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Figure 7. Mean absolute percentage error across all the data points consisting of two years in the test set (GMM) for

(a) models without MCMC sampling, and (b) models with MCMC sampling. MAPE and standard deviation are averaged

over all the coordinates of the pasture, and the prediction step for different models. We observe that, as s increases, the

errors increase over the prediction horizon. s = 4, 2, 1 effectively correlate to 60, 30, and 15 day prediction horizons.
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Figure 8. Prediction (a) Error vs Prediction Step (mm) and (b) Standard Deviation vs Prediction Step (mm) bands for

50%, 75%, 25% quantile range for δ = {32, 64}, s = 4 for a 10 m × 10 m pasture for Lout = {1, 6, 11, 15}, respectively, and

ground truth prediction from the 3D Pasture generated in Gazebo depicting the rate of change of pastures over 60 days.

We observe that the lower quantization δ = 32 outperforms the larger input quantization over the complete predicted

time period.

3.2. Effect of Intervals between Observations

We evaluate our architecture on varying input and output interval sizes of s = {1, 2, 4},
with a prediction horizon of {15, 30, 60} days, respectively, and we observe that the accuracy
of the architecture decreases as the number of intervals between each observation is
increased. This can be clearly inferred from the training and validation loss for each model
in Figure 6. Despite the accuracy loss, our model performs with a cumulative 88% accuracy
even in the most difficult pasture growth timelines for a 60-day prediction horizon. Trends
in pasture growth exhibit a complicated pattern where there exists strong nonlinearity
in growth pattern and large fluctuations over time. We observe that the accuracy across
the prediction horizon averaged over the complete two-year testing dataset decreases
drastically when the interval length is increased from 2 to 4, as shown in Table 1 and
Figure 7. Moreover, we observe that the error rates follow the dynamic growth pattern of
the pasture, where there is large growth in short periods of time, Figure 8a.

Table 1. Accuracy scores are averaged for each testing dataset over the time period (Lin = Lout = 15). The following

models were tested (δ = 64, s = 4), and (δ = 32, s = {1, 2, 4}) with and without approximate Bayesian inference (MCMC)

with 500 samples and pl = 0.4. Accuracy is then calculated both for the test set from 2008 to 2009, and the 30 days sequence

of point cloud measurements from 3D pasture simulated in Gazebo. RMSE, MAE and aSt. Dev. values are reported in (mm)

and MAPE in (%).

Model
Test Dataset (GMM) 3D Pasture (Gazebo)

RMSE MAE MAPE aSt. Dev. RMSE MAE MAPE aSt. Dev.

(δ = 64, s = 4) + MCMC 20.02 14.54 12.25 8.55 12.37 11.21 6.49 11.15
(δ = 32, s = 4) + MCMC 19.11 13.36 11.79 9.14 7.37 6.33 3.61 12.3
(δ = 32, s = 2) + MCMC 11.52 8.13 7.33 8.48 – – – –
(δ = 32, s = 1) + MCMC 6.85 5.05 4.63 8.28 – – – –
(δ = 64, s = 4) 26.35 20.04 15.84 – 24.91 24.03 14.02 –
(δ = 32, s = 4) 24.76 18.81 15.65 – 19.41 18.13 10.6 –
(δ = 32, s = 2) 21.74 16.7 14.49 – – - – –
(δ = 32, s = 1) 18.66 14.40 13.15 – – – – –



Agronomy 2021, 11, 2245 13 of 21

125

150

175

200

Figure 9. Prediction average height (mm) using approximate Bayesian inference for δ = {32, 64}, s = 4 for a 10 m × 10

m pasture for Lout = {1, 6, 11, 15}, respectively. Input sequence to the DeepPaSTL network Lin = 15 is 01 April 2019 to 27

May 2019 and output prediction Lout = 15 every 4 days. The predictions are 1, 24, 44, 60 days in the future during the peak

pasture growth time of 31 May 2019 to 26 July 2019. (Top) Target values acquired from point cloud measurements with

LIDAR of 3D pasture generated in Gazebo. (Middle) δ = 64 generally underestimates the growth of the pasture resulting in

larger errors; however, it generally has a better tracking for lower lying areas or receding pasture heights especially for the

longer horizon. (Bottom) δ = 32 The lower quantization tracks the peaks and troughs of the sward height measurements

quite accurately for the near horizon.
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Figure 10. Prediction errors (mm) for δ = {32, 64}, s = 4 for a 10 m × 10 m pasture for Lout = {1, 6, 11, 15} respectively.

Input sequence to the DeepPaSTL network Lin = 15 is 01 April 2019 to 27 May 2019 and output prediction Lout = 15 every

4 days. These error maps effectively correlate to 1, 24, 44, 60 days in the future during the peak pasture growth time of 31

May 2019 to 26 July 2019. (Bottom) δ = 32 We observe that the lower quantization of the pasture has a distinct advantage

through reduced prediction errors as compared to (Top) δ = 64 for the same set of inputs.

7.5

10

12.5

15

Figure 11. Standard deviation (mm) of predictions for δ = {32, 64}, s = 4 for a 10 m × 10 m pasture for Lout = {1, 6, 11, 15},

respectively. We observe lower uncertainties at the peaks of the pasture due to its lower variability over time. Input

sequence to the DeepPaSTL network Lin = 15 is 01 April 2019 to 27 May 2019 and output prediction Lout = 15 every 4 days.

The uncertainty estimates effectively correlate to 1, 24, 44, 60 days in the future during the peak pasture growth time of 31

May 2019 to 26 July 2019. (Bottom) δ = 32 We observe the lower quantization of the pasture has higher uncertainty in its

prediction when less spatial information is available for processing especially when pasture dynamics are high. (Top) δ = 64

has smaller prediction uncertainties for the same set of inputs.

3.3. Uncertainty over Pasture Dynamics

Due to the volatile nature of pasture growth, it is imperative for prediction models to
be capable of estimating uncertainty. Through stochastic inference by approximate Bayesian
methods [40], we observe that the DeepPaSTL architecture has a higher uncertainty in its
prediction at regions in the pasture with large growth dynamics (Figure 8). The model
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learns to predict regions with high sward heights quite accurately, as the model inherently
captures these strong features within its spatial representations, and consequently we
observe very low uncertainty in its prediction at high grass regions within the pasture. This
is also partially attributed to the fact that peak pasture growths have a lower growth rate
compared to pasture heights that are shorter. However, in the case of s = 4, as we move
forward in time towards the last prediction step at i = 8, 10, i.e., on the 32nd, and 40th
day in the future, we observe that the confidence of the model drops as the time horizon
increases, due to heavy pasture growth, and a sparse historical data (Figure 8b). It can be
clearly observed that the average uncertainty increases, which is further exaggerated by the
increased volatility in pasture growth. Moreover, under the approximate Bayesian inference
due to repeated sampling and inference, the performance of the Bayesian DeepPaSTL
model substantially outperforms the deterministic single pass inference that is used in
standard deep learning methods (Figure 7). The MCMC sampling method allows the
model to have a 3x improvement over standard single forward pass inferences over the
short prediction horizon. It is to be noted that MCMC sampling with s = {1, 2} on average
has an accuracy that is twice as good as the single forward pass methods. We attribute this
improvement to the DeepPaSTLs capacity to accurately model the stochastic dynamics of
the pasture by allowing different nodes in the network to dominate in each forward pass.
We hypothesize that prioritizing on each individual node through stochastic sampling
allows the model to regenerate precise dynamics of pasture growth by focusing on different
factors and representations of the historical observations. However, for long horizon
predictions of s = 4, the difference in accuracy reduces as prediction steps get close to
Lout, Figure 8b, which is attributed to a lack of observational data. We show the results
for prediction performance with and without stochastic inference in Table 1, and Figure 7.
Mean predictions for a 60-day horizon, mapped as a 3D field, is shown in Figure 12, with
the example that has not been synthesized directly from the training data methodology.

140160180200

Figure 12. An example of 3D predicted pastures from the Gazebo simulated point cloud measurements for s = 4.

(Top) Ground truth measured sward heights (mm) of the pasture. Left to right for a 60-day prediction horizon shown for

every 8th day. (Bottom) Prediction by a δ = 32, s = 4 model.

3.4. Imputation of Missing Data

In order to improve the accuracy of the model for long horizon prediction near the 40+
day mark and to address real-world applications that allow a reduction in the frequency of
field measurements, we test the accuracy of the network when imputation is performed
for missing data in the input sequence. We evaluate the performance of the models when
under the following conditions: (a) When data are missing every other day, where an
observation sequence of interval size s = 2 is modified to fit a s = 1 prediction model
using an interpolation of the average growth between the missing data, (b) and similarly
data available in four day intervals has three values inserted to predict with s = 1 models.
We then compare the results to a perfect model where data are available every day for
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s = 1. We show that the network is robust to these events by adapting to the imputed data
and manages to predict the future pasture sward heights to high accuracy, Table 2. We
observe a modest improvement in the performance of model as the prediction network
adapts to a gradual change of pasture growth from the interpolated data. This reinforces
our assumption on the robustness of DeepPaSTL architecture and allows farm owners and
enterprises to expend less resources on daily field measurements, saving valuable time and
reducing the cost of operations of dairy-farms.

Table 2. We measure the accuracy of the prediction model under missing observations over 2 years

of the test data. We denote xt as the input that is missing and Zt as the available observation. xt is

calculated by fitting a linear curve between the available observations within its interval. Evaluation

is done for (Lin = Lout = 15) with (δ = 32, s = 1) with MCMC inference, using 500 samples and

pl = 0.4. Accuracies are calculated for the test set generated with GMM from 2008 to 2009. RMSE,

MAE and aSt. Dev. values are reported in (mm) and MAPE in (%).

Imputation
(δ = 32, s = 1) + MCMC

RMSE MAE MAPE aSt. Dev.

Z1, Z2, . . . Z15 6.85 5.05 4.63 8.28
Z1, x2, Z3, x4, . . . Z15 5.98 4.29 4.24 8.57
Z1, x2, x3, Z4, x5, x6, . . . Z15 6.04 4.44 4.29 8.73

4. Discussion

This study demonstrates that the DeepPaSTL architecture accurately predicts pre-
grazing pasture growths with an average error below 12%, using only the sward height
measurements as its input. The experimental evaluations of this study highlight the
capability of the DeepPaSTL architecture to implicitly learn the biological dependencies
of pasture growths on climate variables such as precipitation, temperature, soil types,
and pasture management processes among others. DeepPaSTL introduces a novel direction
in pasture predictions by treating spatial measurements as the sole observation data for
forecasting future pasture growths. The advantage of using this approach enables pasture
farms to accurately predict future pasture evolution, even if they are not equipped to
monitor fields on a regular schedule. Our results highlight the practical applicability of
our method by depending only on high-resolution spatial mappings that can be generated
through remote sensing, satellite imagery or UAVs. The proposed methodology in this
study also provides a highly scalable prediction methodology that is adaptable to both
small and large pastures.

Our results provide several insights on DeepPaSTL’s capability of predicting a highly
dynamic spatiotemporal pasture over long horizons. Our approach exhibits excellent
accuracy where mean errors were within 5% for shorter time intervals s. For example,
mean errors for s = 1 were within 5% across 2 years of the testing set, which is a substantial
improvement over larger sequence intervals of s = 4 with a cumulative accuracy of 12%,
and a short horizon accuracy for the 20th day to be within 10% . Moreover, allowing the
architecture to perform spatiotemporal predictions over smaller quantizations eases the
prediction and learning burden of the network, further improving the accuracy. Lower
quantizations of the model do not necessarily impact the prediction process, since inference
times are negligible (usually less than an hour) when compared to pasture growth changes.

Bayesian inference, which combines the MCMC sampling to simulate a stochastic
inference of the network, proved to be more robust than standard deep learning inference
methods without uncertainty measurements. Inference through approximate Bayesian
methods enabled the model to predict pasture growths with lower error, and more im-
portantly, a strong correlation was observed between large errors and uncertainty in the
predictions. The findings were indicative of correlations between the model’s capacity to
understand the influence of spatiotemporal evolution through its observed data and its con-
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fidence in predicting large pasture height swings in a short period of time. The uncertainty
is more pronounced when data are sparse especially, as s becomes larger.

The performance of the DeepPaSTL model may also be affected by several other
factors that are not considered in this study due to the lack of available data. We simulate
noise in LIDAR measurements of sward heights in the pasture through a Gaussian noise.
Moreover, we also perform processing over these point cloud measurements to adapt
the data to the neural network. These processes introduce bias and errors in the final
prediction. Our synthetic dataset assumed five different varieties of grass; however, these
might differ across the spatial field and other climatic and local factors that would change
the dynamics of the input observations. This assumes that owners and enterprises are
capable of adapting and controlling the variety of grass species in their environment to
mitigate the issue of large divergences between training data and real-world measurements.
However, the neural network can always be fine-tuned with newer observations and
datasets to adapt to new pasture environments, and we expect the impact on the accuracy
of the model to be modest.

Overall, our prediction results from the DeepPaSTL architecture emphasize several im-
portant directions that prediction and planning tools can consider for integration and future
development. First, the DeepPaSTL encoder–decoder architecture presents a highly flexible
tool for predicting pasture heights across varying spatial sizes and temporal observations.
Second, we empirically show that synthetic datasets that are modeled appropriately can
be a useful tool to generate training data for deep learning prediction models for pasture
growths. Third, the accuracy of the predictions is correlated to the frequency of obser-
vations. However, the lack of intermediate field measurements can be mostly mitigated
through apt use of data imputation. Finally, to allow deeper insights and increase the
generalization power of the architecture, we hope to extend our work to a broader range
of applications by including site-specific measurements and other climatic conditions,
if available, as part of DeepPaSTL.

5. Conclusions

We prove the capabilities of modern deep learning techniques and algorithms for
predicting pre-grazed pasture terrains for both long and short horizons. Through our
proposed techniques, we aim to provide an important first step towards applying high reso-
lution prediction methodologies over complete pasture terrains. Our DeepPaSTL modeling
is capable of predicting over long horizons with an adequate degree of accuracy across
both small and large pasture forms. As part of future work, we believe DeepPaSTL can be
adapted to predict pasture regression due to grazing activities with minimal modifications.
Since DeepPaSTL learns general trends in pasture growth rates, it can be directly applied to
learn and predict growth of pastures recovering from grazing. A dual prediction model for
recovery and regression of pastures due to grazing can be incorporated as part of planning
systems, substantially reducing time and resources spent on field measurements. Adoption
of these techniques can be accelerated by appropriate modeling of growth patterns of
individual sites to generate synthetic historical datasets for DeepPaSTL to perform effec-
tively across varied locations. Since DeepPaSTL can learn with new data accumulated over
months, the model has an inherent capacity to effectively adapt to varying climatic and
environmental conditions.
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BPTT Back Propagation Through Time
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ConvLSTM Convolutional Long Short Term Memory

DeepPaSTL Deep Pasture SpatioTemporal Learning

DOAJ Directory of Open Access Journals

GMM Gaussian Mixture Model

LIDAR Light Detection and Ranging

LSTM Long Short Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MaxPool Maximum Pooling

MCMC Markov Chain Monte Carlo

MDPI Multidisciplinary Digital Publishing Institute

MSE Mean Squared Error

UAV Unmanned Aerial Vehicle
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