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Abstract— Monitoring the health and vigor of grasslands is
vital for informing management decisions to optimize rotational
grazing in agriculture applications. To take advantage of forage
resources and improve land productivity, we require knowledge
of pastureland growth patterns that is simply unavailable at the
state of the art. In this paper, we propose to deploy a team
of robots to monitor the evolution of an unknown pastureland
environment to fulfill the above goal. To monitor such an
environment, which usually evolves slowly, we need to design a
strategy for rapid assessment of the environment over large areas
at a low cost. Thus, we propose an integrated pipeline comprising
data synthesis, deep neural network training, and prediction
along with a multi-robot deployment algorithm that monitors
pasturelands intermittently. Specifically, using expert-informed
agricultural data coupled with novel data synthesis in ROS
Gazebo, we first propose a new neural network architecture
to learn the spatiotemporal dynamics of the environment. Such
predictions help us to understand pastureland growth patterns on
large scales and make appropriate monitoring decisions for the
future. Based on our predictions, we then design an intermittent
multi-robot deployment policy for low-cost monitoring. Finally,
we compare the proposed pipeline with other methods, from
data synthesis to prediction and planning, to corroborate our
pipeline’s performance.

Note to Practitioners—Pasturelands are an integral part of
agricultural production in the United States. To take full advan-
tage of the forage resource and avoid environmental degradation,
pastureland must be managed optimally. This paper focuses
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on the question of how to deploy robot teams to sense and
model physical processes over varying timescales. The goal of this
work is to develop a new integrated pipeline for the long-term
deployment of heterogeneous robot teams grounded in the prob-
lem of autonomous monitoring in precision grazing to improve
land productivity. By using the proposed pipeline in grassland
ecosystem management, we will have a better understanding of
the physical environment while respecting energy budgets.

Index Terms— Precision agriculture, intermittent deployment,
planning, spatiotemporal prediction, deep learning.

I. INTRODUCTION

GRASSLANDS provide many ecosystem services such as
livestock production, wildlife habitat, water infiltration,

and carbon sequestration [1]. Consequently, monitoring the
health and vigor of grasslands is vital for informing man-
agement decisions to protect or optimize these ecosystem
services [2]. Sward or canopy height data provide valuable
insights into the productivity, habitat value, or maturity of
grasslands. When sward height data are monitored over time,
changes in sward height can indicate whether a grassland
is deteriorating, maintaining its vigor, or becoming more
productive. In agricultural systems, monitoring height data can
inform decisions about the appropriate timing and intensity of
grazing in order to meet economic and ecological goals.

Traditional methods of measuring aboveground height or
aboveground biomass rely on labor-intensive methods [3]. For
height, this necessitates measuring canopy height by hand
using a meter stick or Robel pole [4]. Aboveground biomass
measurements often consist of destructive harvest of forage.
Samples are usually cut by hand from a quadrat or frame,
bagged, then dried in a forced-air forage oven until reaching
a constant weight, known as the dry matter. Depending on the
size of the pasture or scope of the monitoring project, height
and biomass sampling may involve dozens or hundreds of such
samples to ensure that the collected data represents the entirety
of the pasture or landscape being monitored.

Advancements in proximal sensing technologies can provide
accurate measurements of height and biomass predictions
faster and over larger areas than these labor-intensive tradi-
tional methods. However, regular field measurements from
pastures through remote sensing methods such as Unmanned
Aerial Vehicles (UAVs) are constrained by multiple factors
such as limited spatial coverage and low frequency of UAV
deployments. Moreover, adverse weather conditions and other
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Fig. 1. A patch (2m × 2m) of the simulated pastureland with a density of
250 grass models per square meter.

resource constraints also contribute to limited deployment and
consequently insufficient field measurements of the pasture
required to plan grazing activities. In spite of these limitations,
precision agriculture involving the use of UAVs to monitor
the growth of crops is a promising approach to covering large
areas in reasonable times. Analyzing point clouds obtained
from the LiDAR attached to UAVs can help to determine
the spatial distribution of plants and growth in different
regions of the farm and consequently help the farmer focus
their resources in regions where they are required the most.
Developing prediction models for pastures that work within
the limitation of UAV deployment schedules is a promising
approach and helps alleviate resource-limited field measure-
ments. With an intermittent deployment coupled with a tightly
integrated prediction and planning model, this approach would
generate maximum efficiency for livestock grazing and pasture
recovery processes.

With the above motivation, this paper explores the use of
autonomous robots to facilitate environmental monitoring for
improving land productivity. At a high level, our proposed
pipeline works as follows (Fig. 2). We first use historical
data to synthesize a 3D dynamic field to simulate the spa-
tiotemporal environmental process of the site that needs to
be monitored (Section IV). For illustration, a small patch
(2m × 2m) of the generated pasture is shown in Fig. 1, where
the density is 250 grass models per square meter. We then
use this data to train neural networks to learn the dynamics of
this field (Section V). Then, an intermittent deployment policy
is designed for multi-robot teams (UAVs in our case) using
the future pasture height predictions while respecting system
budgets (Section VI). After that, we simulate a pastureland
environment in ROS Gazebo [5] to test the performance of
the synthesized data (Section VII). Finally, we evaluate the
performance of each aspect of our solution and compare it to
competing methods (Section VIII).

In order to synthesize appropriate training data for high-
quality predictions, historical data were generated using the
expert-informed Agricultural Production Systems sIMulator
(APSIM) Next Generation in Section IV. APSIM is designed
to model long-term agricultural production in a variety of
systems [6]. Using historical meteorological data from three
sites in Iowa, APSIM simulated 30 years of tall fescue (Sche-
donorus arundinacea) pasture dry matter production for each

site. Simulated pasture yield was then used to generate average
pasture height data based on the equation reported by Schaefer
and Lamb [7] describing the relationship between pasture
green dry matter and LiDAR-measured pasture height. Based
on the historical average pasture height data, we then use a
Gaussian mixture model (GMM) to simulate the dynamics of
this field over the desired monitoring horizon in Section IV.

In this paper, we aim to propose an entire pipeline for
a precision agriculture application with the help of robots.
The pipeline includes multiple parts: prediction, estimation,
planning, evaluation, etc. Therefore, before conducting a real-
world validation, we need to validate the effectiveness of
the integration of different parts, as performing a real-world
verification is a long process. Therefore, this paper will use a
high-fidelity world that simulates the growth of a pastureland
environment with the help of high-fidelity grass models and
historical data.

Even with a sufficient training data set based on
expert-informed historical data, developing an effective pre-
diction model for estimating pasture growth is challenging
due to changes incurred by the climate and the spatiotemporal
characteristics of the growth. Previous studies for forecasting
spatiotemporal dependencies have been based on conventional
approaches. These methods require a complex and meticu-
lous simulation of the physical environment for a particular
application. Instead, learning-based models provide increased
flexibility in tackling the difficult spatiotemporal sequence
prediction problem that large-scale forage monitoring poses.
To address this problem from a deep learning perspective,
we use our proposed long short-term memory (LSTM) and
convolutional neural network (CNN) based architecture [8] to
model the pasture growth forecasting problem in Section V.

Finally, with high-quality pasture growth predictions,
a multi-robot deployment policy can be designed to guide
future field measurements, as detailed in Section VI. Our
proposed deployment policy aims to maximize the sum of col-
lected information (uncertainty) from the environment while
considering the system’s waiting penalties and energy con-
straints. In general, we formulate this deployment problem
as a submodular maximization problem with matroid con-
straints [9]. The energy constraints will be formulated as
matroid constraints, while the collected information and the
waiting penalties will be part of our objective function. Addi-
tionally, as the deployment policies gather field measurements,
the prediction model can be updated iteratively to generate
more accurate estimates of future pasture growth. Through
an optimized prediction and deployment model, we show that
UAV deployments for pasture monitoring can be scheduled
based on the prediction model instead of at regular intervals,
effectively reducing the required number of deployments. This
need-based intelligent deployment policy substantially reduces
the cost of gathering field measurements and effectively allows
resource-constrained enterprises to manage pasture grazing
more effectively.

Beyond the forage monitoring problem, the proposed
pipeline can be mapped to other large-scale monitoring prob-
lems for sufficiently slow spatiotemporal processes where
intermittent deployment is reasonable. That is, the data syn-
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thesis – neural network training/prediction – intermittent
multi-robot deployment pipeline is quite general, given access
to expert-informed data as a starting point. For example,
in ocean monitoring applications [10], [11], we can use the
proposed pipeline to generate and refine deployment poli-
cies given the availability of high-quality models of aquatic
processes.

Contributions: In summary, the contributions of this work
are as follows:
• We propose an integrated pipeline1 to simulate and solve

an important problem in the precision agricultural space,
forage monitoring, including data synthesis, prediction,
planning, and perception (Section III).

• We demonstrate how to exploit historical agricultural data
to synthesize a pastureland environment in a manner that
accommodates both neural network training and rapid
prototyping in a simulation environment (Section IV).

• We demonstrate a scalable spatiotemporal learning archi-
tecture that can be used to integrate with an intermittent
multi-robot planning strategy (Section V).

• We introduce a novel intermittent deployment policy
that integrates neural network-based predictions while
considering budgets to deploy robots for autonomous
environmental monitoring (Section VI).

• We have built (and made available) a high-fidelity pas-
tureland simulation environment in ROS Gazebo, allow-
ing for rapid prototyping of pasture monitoring with
LiDAR point clouds (Section VII).

A preliminary portion of this work appeared in [8] and [12].
In this work, we focus on building a general pipeline for pre-
cision agriculture applications, which first focuses on utilizing
the proposed deep learning networks [8] to make predictions
and then on how to utilize those predictions to make robotic
deployments with different budget constraints.

II. RELATED WORK

Predictive modeling of agricultural systems can provide
helpful information on their long-term resilience and pro-
ductivity. Predictive models have been developed for many
crops and regions, tested extensively, and refined for increased
predictive accuracy for commodities such as corn, soybeans,
wheat, and rice, to name a few. As model accuracy increases,
it can provide insights into crop responses to abiotic stressors
such as climate change [13], [14], or identify optimal crop
rotations between species over a period of years [15]. How-
ever, agricultural modeling of forage systems presents unique
challenges compared to row cropping systems, as forage
systems are often perennial rather than annual, the forage crop
can be “harvested” multiple times per year by grazing livestock
or cutting for hay, and pastures are typically multispecies
ecosystems rather than monospecific crops with homogeneous
phenotypes and physiology [16]. Several forage modeling
programs have been developed despite the aforementioned
challenges. These include—but are not limited to—the Simula-
tion of Production and Utilization on Rangelands (SPUR) first

1https://github.com/precision-grazing/project

developed on rangelands in the 1980s [17]; the GRAzing SIm-
ulation Model (GRASIM) developed in the late 1990s [18];
the Dairy Forage System Model (DAFOSYM) developed in
the late 1980s and updated into the Integrated Farm System
Model (IFSM) [19]; and the Agricultural Production Systems
sIMulator (APSIM) Next Generation, which can model both
row-cropping systems and pastures [20]. We select APSIM
as the optimal modeling program for our research, as the
program has been used previously for pasture modeling in a
variety of contexts [21], [22]; provides daily timestep outputs,
which fulfilled our need for fine-grained temporal data, and
the program’s modular nature allows for rapid customization
of input parameters [14], [23].

The problem of predicting evolving pastureland over time
can be tackled with conventional methods such as Gaussian
processes (GPs) [24], which focus on stochastic Gaussian
processes to model the regression for different pasture heights
or observations. This method is also known as Kriging [24].
GPs are non-parametric methods by defining the internal rela-
tions between observations [25]. Similarly, Gaussian Markov
Random Fields (GMRFs) are often used to model spatial
environmental fields [24]. These conventional methods are
suitable for problems with significant prior knowledge of
the environment that needs to be monitored. The historical
data used in this paper can give us a general trend of the
average height change of the field. However, as we must
make predictions on large scales, this prior is insufficient
for us to generate a reasonable conventional model for the
entire pastureland environment (not to mention the issues
with computational scaling). Moreover, as the growth patterns
may differ across the field, conventional models are not as
flexible for modeling the heterogeneity of growth patterns
spatially and temporally. We, therefore, sought to apply a
neural network-based method to tackle this prediction problem
when we have a large dataset for modeling the heterogeneity
of the environment.

Specifically, we implement a framework that integrates
a neural network-based encoder-decoder architecture to
learn the historical data’s underlying patterns over time for
future predictions. The problem of predicting future pasture
heights is analogous to video frame prediction [26], with
the key challenge in our case lying in predicting the growth
of pasture surfaces. In the deep learning-based prediction
domain, sequence-to-sequence problems were originally
introduced through recurrent neural networks (RNN) and long
short-term memory (LSTM) models and provide a baseline for
solving temporal forecasting problems that we encounter in
this work [27], [28], [29]. To incorporate spatial features, prior
works have generally used multiple architectures to consider
spatial and temporal features separately by combining the
autoencoder or a generative adversarial network (GAN)
model with an RNN model [26], [30], [31]. Convolutional
LSTMs (ConvLSTMs) [32] have been successfully used
for spatiotemporal predictive learning and were originally
proposed for precipitation nowcasting over radar images.
Recent works have used the architecture for learning frame
representations [33]. Motion-content network (MCNet) [34]
uses an additional LSTM apart from the image encoder to
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model the motion dynamics. The outputs of both the encoders
are combined and fed to the decoder to predict frames.
Recently, [35], [36] proposed ST-LSTM to learn structural
information for spatiotemporal sequences and a new model
structure PredRNN and PredRNN++ to explicitly decouple
memory cells and improve the cross-layer interaction of
memory states across different LSTMs. These methods help
improve stronger spatial correlation and short-term dynamics
for powerful modeling and prediction capabilities. We utilize
the recent developments in ConvLSTM applications and
propose a novel prediction architecture that is particularly
effective in predicting the rapidly changing dynamics of
the pasture over long horizons. We achieve this through
the use of recurrent encoder-decoder networks based on
ConvLSTMs over different resolutions of the pasture to
effectively capture different features and dependencies of the
pasture dynamics. Moreover, by using appropriate processing
described in Section V over raw pasture data, our pasture
terrain forecasting technique can scale to any terrain size.

Standard deep learning-based models do not capture model
uncertainty. Unlike regression problems, where a model can
output a predictive probability, we need to extrapolate pre-
diction uncertainty from training data as we deal with a
sequence-to-sequence prediction problem. Bayesian proba-
bility theory has been used in deep learning to deal with
uncertainty [37], [38], [39], [40], where the weights of the
neural network are defined as distributions. Bayesian neural
networks (BNN) are more robust to over-fitting. However,
they add significant computation complexity. Sampling-based
and stochastic variational inference methods have been used
to approximate Bayesian neural networks [41], [42], [43].
Similar to BNN, these methods incur high computational costs
without additional benefits to improving accuracy. An alter-
native approach [44] with minimal computational and model
complexity in deep learning models was proposed through
the use of Dropouts [45]. The authors show that any neural
network with arbitrary depth and non-linearities, modeled with
dropouts behind every layer, is equivalent to the approximation
of a probabilistic deep Gaussian process [46]. In our previous
work [8], we integrate this concept of uncertainty estimation
from dropout over our architecture to provide the necessary
uncertainty maps for multi-robot monitoring from a typical
machine learning perspective. Whereas in this work, our focus
is on integrating a combinatorial optimization-based planner
with proposed deep learning-based predictions [8] and per-
forming a deep evaluation of the entire pipeline with realistic
simulations. From the multi-robot deployment perspective,
to estimate the evolving processes of pastureland environments
more efficiently, we cannot deploy robots (UAVs) to collect
observations frequently because it is not energy efficient.
Those types of observations can be point clouds, heightmaps,
sonar data, etc. Meanwhile, the deployment strategy should be
generated based on environmental information instead of being
artificially defined. This intermittent idea can also be found
in other robotics applications. In [47], the robots in a team
are designed to communicate intermittently while working
together to explore an environment. In [48], the authors use
time windows to model the availability of robots at different
times in task allocation applications. Therefore, robots are not

required to work continuously. The idea of intermittence is
contrary to that of persistence, where robots are required to
work continuously to fulfill different tasks [49]. In [50], the
authors proposed a deep learning-based method for combining
environmental prediction and path planning, where spatial path
planning is the primary concern in the paper. In [51], the
authors investigated a sampling-based path planning method
for variance reduction. Similarly, in [52], the author used
an adaptive sampling strategy for reducing entropy generated
from GP modeling. In [53], a GMRF-based method was
proposed for spatial predictions.

Since the monitored environment evolves spatially and
temporally, we need to utilize the predicted environmen-
tal information to make a spatiotemporal deployment plan.
In [54], we use a partially observable Markov decision process
(POMDP) to model the dynamics of an environmental process.
Then, a submodular objective function is applied to model
the false alarm and delay cost. This method works only
when the process models are known and can be modeled as
POMDPs. In [12] and [55], we use non-parametric Gaussian
processes [24] to model the dynamics of a monitored environ-
mental process and then use mutual information as a metric
to guide our deployments. Meanwhile, matroids are used to
model the budget constants. Generally speaking, matroids [9],
[56] can be used to model the independence in constraints,
which can be found in many robotics applications, e.g., task
allocation [57], deployment planning [58], [59], probabilistic
security in multi-robot systems [60], etc. We will also use
this tool to model the independence of different constraints
in the deployment strategy in this work. In general, the
environmental modeling methods used in our previous works
are conventional GP-based methods, where a prior of the
entire environment is needed to utilize historical data. While in
this paper, the environment modeling method is a data-driven
approach, which builds the dynamics of the environment
through a historical dataset where an exact process model
is not required. Moreover, the environment modeling and
the deployment policy generation are highly connected in
this paper. Finally, as the deployment policies gather more
measurements, the proposed data-driven prediction model can
be updated accordingly for better future predictions.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

A core aspect of this paper is to optimize multi-robot
deployment plans by utilizing historical agricultural data.
We propose to tackle this problem from a combinatorial
optimization perspective. To this end, we begin by reviewing
the concepts related to our objective function and constraint
modeling.

A set function f : 2V �→ R is a function that maps any set
A ⊆ V into R, where V is the finite discrete ground set.

Definition 1 ([9]): A set function f : 2V �→ R is

• normalized, if f (∅) = 0;
• monotone non-decreasing, if f (A) ≤ f (B) when A,B ⊆
V , and A ⊆ B;

• submodular, if f (A∪ {v})− f (A) ≥ f (B ∪ {v})− f (B)
when A,B ⊆ V , A ⊆ B, and v ∈ V \ B.
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The property of submodularity is often described as having a
diminishing returns property (as the above definition suggests),
making it a natural option for modeling objective functions
in robotics (e.g., sensor placement [61], set coverage [9], task
allocation [62]). It is also convenient to work with the marginal
return when an element v is added to A, which is defined as
f ({v} | A) � f (A ∪ {v})− f (A). The submodularity level of
a set function can be measured using curvature, a property of
the set function itself. Curvature can be defined as follows.

Definition 2 ([63]): Let f : 2V �→ R be a monotone
non-decreasing submodular function, we define the curvature
of f (·) as

c f � 1−min
a∈A

f (V)− f (V \ {a})
f ({a}) ,

where A = {a ∈ V | f ({a}) > 0}, and V is the ground set.
It holds that 0 ≤ c f ≤ 1. If c f = 0, then f (·) is a modular

function and f (A ∪ {v})− f (A) = f ({v}),∀A ⊆ V, v ∈ V\A
when V is the ground set. If c f = 1, then f (A ∪ {v})− f (A) =
0, where A ⊆ V and v ∈ V \A. This means adding v has no
contribution to the function value f (·) if A is selected.

Next, we introduce the related concept of constraint mod-
eling. Matroids generalize the idea of independence in set
systems. Meanwhile, efficient sub-optimal solutions can be
found when constraints are modeled by matroids [64].

Definition 3 ([56]): A matroid M = (V,I) is a set system
that contains a finite ground set V and a collection I of subsets
of V with the following properties:

1) ∅ ∈ I;
2) If A ⊆ B ∈ I, then A ∈ I;
3) If A,B ∈ I and |B| < |A|, there exists a v ∈ A \ B

such that B ∪ {v} ∈ I.

The intersection of L matroids can be written as M =
(V,I), where Mi = (V,Ii) is the i th matroid and I =⋂L

i=1 Ii . The cardinality of this matroid intersection constraint
is |M| = L. A set belonging to a matroid means that
this set should satisfy the matroid conditions. Examples of
matroid constraint modeling in robotics can be found in task
allocation [57], orienteering [65], action selection [66], etc.

B. Problem Formulation

Consider a spatiotemporal forage process evolving in a
2D pasture environment (which we model rigorously in the
sequel). In simple terms, we are interested in determining
forage height for any location in the pasture environment
over a long time horizon by deploying multi-robot teams.
To fulfill this goal, we divide our efforts into two tasks: forage
process prediction and multi-robot planning. In the following,
we outline the fundamentals of these tasks and conclude with
a concrete problem statement.

1) Prediction: Assume that we are given historical 2D
heightmaps Xt ∈ R

M×N of a pasture field at different times,
where t is the associated time index, and M, N are the width
and the length of the pasture heightmap, which correspond
to the discretization resolution. This resolution will be used
for both prediction and planning problems. Denote by X =
{Xt ∈ R

M×N | t ∈ Tx} the historical dataset containing all

the historical measurements, where Tx contains all the time
indexes associated with each Xt ∈ X . The extracted height of
the pasture in location (x, y) with respect to Xt is denoted by
Xt(x, y). Our first goal is to train a neural network to predict
future pasture heights Ȳt for the prediction horizon Ty using
the historical dataset X . This prediction process is modeled as(

Ȳt , σ̄
2
t

)← �(X , W), ∀t ∈ Ty, (1)

where � is our neural network model, W is the set of para-
meters of the model, Ȳt ∈ R

M×N is the predicted heightmap
at t , and σ̄ 2

t ∈ R
M×N is the corresponding variance at t . Also,

we denote by Ȳ = {
Ȳt ∈ R

M×N | ∀t ∈ Ty
}

the prediction set
that contains all of the predicted heightmaps for the prediction
horizon Ty , and denote by �̄ = {

σ̄ 2
t ∈ R

M×N | ∀t ∈ Ty
}

the
corresponding variance set. The details will be specified in
Section V.

2) Planning: Based on the predicted heightmaps Ȳ and
variance maps �̄, we seek a multi-robot deployment strategy
to collect data, reinforce our predictions, and ultimately make
better pastureland management decisions. To determine a
deployment strategy, we first need to build the ground set V ,
which contains all possible deployment decisions for robots
over space and time. Consider a team of robots available
to deploy over the time horizon Ty , the prediction horizon.
The family of all available locations is denoted by P . Thus,
we have (x, y) ∈ P , and |P | = M · N is the cardinality of the
deployable locations. We also denote by R the set of indices
of all robots. Each robot r ∈ R may have a different sensing
ability, i.e., sensing noise. Therefore, the ground set V at time
t , containing all available deployment choices, is as follows:

Vt = {(x, y, r, t) : ∀(x, y) ∈ P, r ∈ R}.
We interpret (x, y, r, t) as “location (x, y) is sensed by robot
r at time t”. To simplify the notation, we will use a 4-tuple
v = (x, y, r, t) to denote the deployment decision factor
in the following. Finally, the ground set of the deployment
problem is V = ⋃

t∈Ty
Vt . The cardinality of the ground set

is |V| = |P | · |R| · |Ty |. The associated predicted variance
with respect to v at t is represented by σ̄ 2

t (v),∀v ∈ V . Since
σ 2

t (v) is the predicted variance map at time t for v, we can use
σ̄ 2

t (x, y) ∈ R to denote the predicted variance that corresponds
to location (x, y) ∈ P at time t ∈ Ty . We want to determine
a deployment policy set S ∈ V to maximize the information
we can get from the environment while respecting the system
budgets. To this end, we denote by f : 2V �→ R the objective
function and denote by M a set of sets defining the system’s
admissible deployment policies. The details will be specified
in Section VI.

3) Problem Statement: With the basics of prediction and
planning outlined, we now formalize the problem we solve in
this paper.

Problem 1 (Intermittent Deployment): Consider a histori-
cal set X = {

Xt ∈ R
M×N | ∀t ∈ Tx

}
, containing heightmaps

of a discretized M × N pasture over a time horizon Tx .
Let V be the ground set containing all possible multi-robot
deployment factors v = (x, y, r, t) over a time horizon Ty .
Assume further the existence of a predicted variance set �̄ ={
σ̄ 2

t ∈ R
M×N | ∀t ∈ Ty

}
. The intermittent deployment problem
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Fig. 2. A diagram of our overarching solution. Data synthesis is first used to simulate historical pasture data. Then spatiotemporal learning is used for neural
network training and prediction based on historical data. Next, the planning aspect is used to make multi-robot deployment decisions for collecting new data.
Finally, on the far right, we illustrate the high-fidelity simulation we have built for evaluating our pipeline.

is to maximize a set function f (·) by selecting appropriate
deployment factors while respecting budget constraints. That
is,

maximize
S⊆V

f (S)

subject to S ∈M.

By selecting the set S that maximizes the objective func-
tion, we can determine all deployment factors containing
deployment locations and times to conduct deployments while
maintaining efficiency.

Remark: This work focuses on predictions and planning
perspectives, especially in spatiotemporal deployment location
selection under limited energy conditions. We should note
that a path planning problem is a subsequent problem of the
proposed framework, and any of them can be integrated into
the framework. Therefore, we focus on prediction and planning
to set up a cornerstone for the subsequent problems.

The diagram of our proposed solution to the above problem
is shown in Fig. 2. Our pipeline can be divided into the
following aspects, which we detail in the sequel: data synthesis
(Section IV), deep learning prediction (Section V), planning
(Section VI), and evaluations (Section VII).

IV. LARGE-SCALE PASTURE ENVIRONMENT SYNTHESIS

In this section, we focus on pasture environment synthesis.
This process will be divided into two parts. First, we illus-
trate how to synthesize historical average pasture height data
(Section IV-A). Based on this data, we then introduce how
to utilize this data to create a dynamic pasture environment
(Section IV-B).

A. Historical Data Preparation

‘Historic’ pasture data were generated using APSIM Next
Generation’s publicly available meteorological, soils, and pas-
ture species modules. We selected three sites in Iowa due to the
availability of meteorological data for each in APSIM’s Met
module as a result of prior research [67]. Meteorological data

spanned 1979 to 2013 and included solar radiation (MJ/m2),
rain and snowfall, minimum and maximum temperature,
atmospheric pressure, and day length. Soils selected in the
module were fine-loamy, mixed, superactive, mesic Hapludolls
common in Iowa, also available in APSIM’s modules [67].
APSIM’s tall fescue AgPasture module was used for the forage
species [14]. Tall fescue was set to 1m rooting depth and
initial belowground and aboveground biomass of 1000 kg/ha
and 3000 kg/ha, respectively. The SoilOM module, which
simulates soil organic matter processes, was set to 1000 kg/ha
initial surface residue. Fertilizer application was simulated
at 84 kg N/ha on January 1 and another 84 kg N/ha on
August 15 each year in the form of nitrate (NO3-N). The
resulting simulated pasture yield was then used to generate
average pasture height data using an equation reported by
Schaefer and Lamb [7] describing the relationship between
LiDAR-measured pasture height and pasture green dry matter,
i.e., green aboveground biomass. In this paper, we denote by
h ∈ R

Tx the historical data, where Tx = |Tx | is the length
of the historical dataset horizon Tx , which is also defined
in the problem formulation in Section III-B. We also denote
by ht ∈ R the average pasture height data at time t in the
historical dataset. Further information on the above APSIM
modules’ functions and processes may be found in the work
of Li and colleagues [14].

B. Pasture Environment Data Synthesis

The generated average pasture height data is temporal
data. When making predictions for different locations and
developing spatiotemporal deployment strategies, we need
both spatial and temporal historical data to know the growth
patterns in different places of the pasture field. Therefore, this
section focuses on synthesizing spatiotemporal data from the
historical average pasture height data. In general, this process
fits a spatiotemporal process to the temporal aspects of the
historical data.

In this work, we use a dynamic Gaussian mixture model
(GMM), a combination of Gaussian distributions, to simulate
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the pasture evolution using historical data. The GMM used
in this work is a discrete model as we need to make predic-
tions for different days and make corresponding deployment
decisions for different times and locations. We should note
that there are many other ways to simulate a spatiotemporal
process by using temporal data only, and we select GMM
for the following reasons. GMM is a common tractable
process representation, which allows us to adjust the model
to match the actual field-evolving process. From expert inputs
or manual field measurements, we can choose reasonable
spatial parameters for the GMM to complement the temporal
parameters coming from historical data, so the spatiotemporal
model represents the pasture evolving process.

In general, we first use B components to build a dynamic
GMM and then use the historical data h to adjust the generated
model to match the historical information. The dynamic GMM
is modeled as

Gt(x, y) =
B∑

i=1

wi(t)bi (x, y) = w(t)�b(x, y), (2)

where (x, y) ∈ R
2 is a 2D location from the location set

P , basis bi(x, y) ∈ R is the output of i th basis function in
the location (x, y), B is the number of basis functions, and
Gt(x, y) is the output of the GMM at time t and location
(x, y). The weight wi(t) ∈ R is associated with bi(x, y),
where t ∈ Tx . The i th basis function bi(x, y) is a Gaussian
kernel function. That is,

bi(x, y) = exp

[
−

[
(x, y)− (bxi , byi)

]2

2c2
i

]
, (3)

where (bxi , byi) ∈ R
2 is the 2D position of i th basis function

bi(x, y), and ci is the corresponding length-scale. Also, w(t) ∈
R

B is the stacked weights at time t and b(x, y) ∈ R
B is the

stacked basis functions for the location (x, y). One way to
generate a dynamic 3D smooth surface to simulate pasture is
to change the weights of different basis functions smoothly at
different times. To achieve this goal, we use a 1D Gaussian
process [68] to model the change of each weight at different
times for the entire time horizon Tx . After this step, a dynamic
GMM is fully built.

Next, we need to tune the offset between the generated
surface and the historical data to make them match with each
other. Specifically, we need to adjust the generated GMM
surfaces at different times using the historical average height
data. That is:

Xt(x, y) = Gt(x, y)+ ht − Ḡt ,

where ht ∈ R is the historical average height at time t ,
Gt(x, y) is the generated GMM data for location (x, y) at
time t , and Ḡt ∈ R is the simulated average height of
the field at that time, which is calculated by using Ḡt =
|P |−1

∑
(x,y)∈P Gt(x, y). The data Gt(x, y) is generated with-

out incorporating our historical temporal data as we only
focus on generating the dynamics of the field. To calculate the
difference between our generated data and the actual historical
temporal data, we can calculate the difference as ht−Ḡt , where
ht is the historical data at time t and Ḡt is the average height

of the generated 2D field. This difference is the offset between
the average height of the generated surface and the historical
average height. Then, based on this difference, we can tune
the generated surface using this offset. After this series of
operations, the spatiotemporal dataset X = {Xt ∈ R

M×N | t ∈
Tx} is fully constructed and can be used in the later learning
and predictions.

To summarize the data synthesis process, we first synthesize
the historical average data h. Then, we build a dynamic GMM
denoted by G, and adjust this model to make the temporal
property of G match the historical average data h. Finally, the
adjusted dataset is denoted by X that will be used in learning
and predictions (below).

V. SPATIOTEMPORAL LEARNING AND PREDICTION

In this section, we will be first focusing on learning the
dynamics of the generated field using the generated dataset
X = {Xt ∈ R

M×N | t ∈ Tx}. Note that pre-processing will
be applied before feeding X into our training networks. Then,
we will use the learned dynamics to make predictions of the
future field, which will serve as inputs for the deployment
strategy planning (Section VI).

In general, our spatiotemporal learning network is modeled
as (

Ȳt , σ̄
2
t

)← �(X , W), ∀t ∈ Ty,

where � is our neural network model, W is the set of para-
meters of the model, Ȳt ∈ R

M×N is the predicted heightmap
at t , and σ̄ 2

t ∈ R
M×N is the corresponding variance at t . Next,

we give the details of our mean and variance predictions.
Since the prediction model will take as input a sequence of

heightmaps to predict multi-step long-horizon future pasture
heights, we need to reorganize Xt ∈ X ,∀t ∈ Tx to satisfy this
requirement. Meanwhile, we need pre-processing to enable our
proposed model to tackle different pasture sizes. We aim to
reorganize all Xt ∈ X ,∀t ∈ Tx to form multiple training
sequences. We define the i th training sequence as Xi ={
Xt ∈ R

M×N | ∀t ∈ Ti
}

with Ti = {i, i+δ, . . . , i+αδ}, where
δ is the number of intervals before each input observation
in the training sequence, α is the number of observations in
Xi , and Ti contains all the time index associated with every
Xt ∈ Xi . Note that Ti ⊆ Tx . The complementary training
label (ground truth) for an input sequence Xi is then defined
as Yi =

{
Yt ∈ R

M×N | ∀t ∈ Ty
}
, where Ty = {i+(α+1)δ, i+

(α+ 2)δ, . . . , i + (2α + 1)δ} contains the expected prediction
step at δ intervals. Therefore, α = |Ti | = |Ty|. The effective
length (horizon) of the input and output sequences are then
calculated as L = δ · α. Varying the number of strides δ
in the sequences allows our prediction model to work with
both short-term and long-term horizons. For example, given
an input sequence of α = 15 and a stride of δ = 4, we have
an effective observation length of 60 days. Finally, the neural
network outputs a prediction sequenceȲi = {Ȳt ∈ R

M×N |
∀t ∈ Ty} for each input sequence Xi , where Ȳt is the prediction
with respect to the ground truth Yt at t .

Remark: For the scope of this paper, we train our networks
using the same input and output observation interval δ and
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Fig. 3. Prediction neural network architecture is defined as an encoder-decoder. Initial feature maps across different resolutions are generated using Conv2D
encoders and then are iteratively fed to the ConvLSTM encoders to encode the input observations. The ConvLSTM decoders then recursively generate
representations for each interval in the output. These recurrent hidden representations across resolutions are then merged to generate the final prediction
sequence. Residual connections are used to ease the regeneration of outputs from the generated hidden representations.

the same number of observation/measurements α. That is,
α = |Tx | = |Ty |. However, it is to be noted that the proposed
network can be trained on varying sequence lengths without
changing the architectural design. This is due to the inherent
flexibility of an encoder-decoder design.

The high-level idea of the mean predictions is as follows.
For each time t , we will use the averaged prediction Ȳt from
several Monte Carlo (MC) predictions Ŷ(k)

t ∈ R
M×N as the

final predicted heightmap at t , where Ŷ(k)
t is the kth MC

prediction at time t . That is, Ŷ(k)
t ← �(X , W),∀t ∈ Ty . The

averaged mean prediction is given by

Ȳt = EPr(Ŷt |X )(Ŷt) ≈ 1

K

K∑
i=1

Ŷ(k)
t , ∀t ∈ Ty. (4)

Each MC prediction is a realization of the proposed network
by using a different setting, which will be specified later.
The number of sampled predictions is K for each heightmap
prediction Ȳt ,∀t ∈ Ty.

Our network architecture is shown in Fig. 3. We adapt
the ubiquitous U-Net Convolution Neural Network frame-
work [69] with ConvLSTM cells as an encoder-decoder
framework for making sequence predictions. We introduce
a novel architecture where the model learns spatiotemporal
dependencies for long-horizon predictions using a mixture
of Convolutional Neural Networks (CNN) and ConvLSTM
encoder-decoder layers.

We can now define the process that allows the architecture to
capture spatiotemporal dependencies. As a first step, we define
the ConvLSTM architecture [32] that forms a building block
for our model. ConvLSTMs can be seen as a special case
of LSTMs, by replacing the Hadamard product in LSTMs
with convolution operators. The ConvLSTM block enables the

network to recursively process a sequence of representations
and update its hidden states Ht that encode the complete spa-
tiotemporal representations for all Xi ’s. The key idea behind
ConvLSTMs is its capability to retain information relevant to
its prediction task and forget information over time that might
be repetitive or unnecessary over the sequence. The operations
within the ConvLSTM block are shown as follows:

It = ϕ(Wxi ∗ Xc
t +Whi ∗ Ht−1 +Wci ◦ Ct−1 +Wi),

Ft = ϕ(Wx f ∗ Xc
t +Wh f ∗ Ht−1 +Wcf ◦ Ct−1 +W f ),

Dt = It ◦ tanh(Wxc ∗ Xc
t +Whc ∗ Ht−1 +Wc),

Ct = Ft ◦ Ct−1 + Dt ,

Ot = ϕ(Wxo ∗ Xc
t +Who ∗Ht−1 +Wco ◦ Ct +Wo),

Ht = Ot ◦ tanh(Ct),

where ∗ denotes the convolution operation, ◦ is the Hadamard
product, Xc

t ∈ R
D×W×H is the input of the ConvLSTM block

at time t , D is the number of stacked heightmaps in the blocks,
Ht ∈ R

D×W×H is the hidden state and also the output of the
block at t , Ft ∈ R

W×H is a gate that controls what information
needs to be forgotten or retained for the next step, Ot ∈ R

W×H

is an output gate that controls what information is passed on
to the hidden state, Dt , Ct ∈ R

D×W×H are the temporary cell
state and the cell state at time t that work to accumulate the
information over the history of the sequence, ϕ : R

W×H �→
R

W×H is a sigmoid function. Finally, W• ∈ R
W×H are the

learnable weights and biases of the network.
Formally, we define the model uncertainty through dropouts

in the neural network by sampling K different sets of para-
meters W•. That is,

σ̄ 2
t = Var

(
Ŷ(k)

t

)
, ∀t ∈ Ty .
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This operation is equivalent to performing K stochastic for-
ward passes with the dropout of weights enabled during infer-
ence and then averaging the results. In this work, we simulate
the MC dropout sampling using the Pr = 0.4 probability
of dropping each weight set for stochastic inference during
prediction. Through the use of dropouts between each layer in
our network, both during training and testing time, we enable
our encoder-decoder model to estimate the prediction set Ȳ ={
Ȳt ∈ R

M×N | ∀t ∈ Ty
}

and the corresponding variance set
�̄ = {

σ̄ 2
t ∈ R

M×N | ∀t ∈ Ty
}
. The MC dropout method allows

our model to generate the requisite prediction estimates and
the uncertainty of its prediction in a computationally efficient
process. Therefore, a more detailed network model showing
our intermediate outputs, i.e., Ŷt and σ̂ 2

t , can be summarized
as (

Ȳt , σ̄
2
t

)← (
Ŷt , σ̂

2
t

)← �(X , W), ∀t ∈ Ty .

We also refer the reader to [8] for more details about our mean
and variance predictions.

After the spatiotemporal learning of the pasture, we are
ready to make predictions for the horizon Ty .

VI. MULTI-ROBOT INTERMITTENT DEPLOYMENT

The goal of the deployment is to maximize the information
we can get from the environment while respecting the budget.
To this end, we model the objective function f : 2V �→ R as
follows:

f (S) =
∑
s∈S

(
σ̄ 2

t (s)
∑

s ′∈S\s

d(s, s′)
|S \ s|

)
− w1(t − t1), (5)

where σ̄ 2
t (s) is the prediction variance of the decision factor

s at time t . Note that t1 is the starting time index of the
prediction horizon Ty . The distance function d(s, s′) is the
weighted Euclidean distance and time difference between s
and s′. That is,

d(s, s′) = w2 log(||(x, y)− (x ′, y ′)||)+w3||t − t ′||, (6)

where s = (x, y, r, t) and s′ = (x ′, y ′, r ′, t ′) are two different
decision factors. And w1 is the waiting penalty weight, w2 is
the weight for the physical distance, and w3 is the weight for
the time difference between s and s′ ∈ S \ s.

The objective function is a weighted sum of prediction
variances. The nominator σ̄ 2

t (s) is the prediction variance of
the decision factor s at time t . The denominator is the sum
of the weighted distances between s and s′ ∈ S \ s for all
s ∈ S. Meanwhile, w1 is the weight to penalize the waiting
time. We can deploy robots using a deployment set S that
maximizes the objective function f (·) to reduce the prediction
uncertainty.

Since the deployment should be energy efficient, we have
two constraints to model the deployment budgets. The first
constraint is,

|S ∩ Vt | ≤ �t ,∀t ∈ Ty . (7)

This constraint (per-day budget) indicates that the number of
deployments cannot be larger than �t at time t , where �t ∈ R.

Algorithm 1 The Algorithm for the Long-Term Pasture Pre-
diction and Sensing Problem
Input: The inputs are as follows:
• The historical dataset X = {

Xt ∈ R
M×N | ∀t ∈ Tx

}
;

• The neural network �(·);
• The deployment ground set V ;
• The objective function f : 2V �→ R;
• The matroid intersection constraint M = (V,I).

Output: The deployment strategy set S.

1: for t ∈ Ty = {τ, . . . , T } do
2: Ŷ(k)

t ← �(X , W),∀k = 1, . . . , K ;
3: Ȳt ← 1

K

∑K
k=1 Ŷ(k)

t ; � Mean
4: σ̄ 2

t ← Var(Ŷ(k)
t ); � Variance

5: �̄ ← �̄ ∪ {σ̄ 2
t };

6: end for
7:

8: S ← ∅,Z ← V ;
9: while Z �= ∅ do

10: s ∈ arg maxv∈V\Z f ({v} | S);
11: if S ∪ {s} ∈ I then
12: S ← S ∪ {s};
13: end if
14: Z ← Z ∪ {s};
15: end while
16: S ← deployment strategy;

The second constraint is,∑
t∈Ty

1(|S ∩ Vt |) ≤ �, (8)

where 1(·) is an indicator function as

1(|S ∩ Vt |) =
{

1, if |S ∩ Vt | ≥ 1 ,

0, if |S ∩ Vt | = 0.

This constraint (total budget) suggests that the total number
of deployable days cannot be larger than �, where � ∈ R.
Therefore, the problem formulation is

maximize
S⊆V

f (S, �̄)

subject to |S ∩ Vt | ≤ �t , ∀t ∈ Ty,∑
t∈Ty

1(|S ∩ Vt |) ≤ �.

It has been shown that both constraints are matroidal [12],
and we will use M1 = (V,I1) and M2 = (V,I2) to
denote those two, where M1,M2 are matroids and I1,I2 are
independent sets. To simplify the notation, we use M =
(V,I), where I = I1 ∩ I2, to denote the intersection of two
constraints. Thus, M is a matroid intersection constraint and
the cardinality is |M| = 2.

Using the proposed architecture with ConvLSTM and resid-
ual connections, we have the predicted variance set �̄ ={
σ̄ 2

t ∈ R
M×N | ∀t ∈ Ty

}
. Given the intermittent deployment

problem (Problem 1) and the deployment ground set V ,
we propose to solve the problem using Algorithm 1. From
Line 1 to Line 6, we first use the proposed architecture to
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Fig. 4. A diagram of our pasture construction process.

predict the variance set �̄ for the prediction time set Ty . In the
second part, the algorithm greedily selects all the available
decision factors v ∈ V \Z based on the marginal gain f ({v} |
S), where Z is used to store all checked decision factors.
The set S is the current solution of the deployment strategy
and will be updated iteratively. Specifically, we initialize a
set Z as V . Then, in Line 10, we select one of the decision
factors v that maximizes the marginal gain of the objective
function f ({v} | S), where S is the current solution of the
problem and will be expanded as more decision factors are
checked. In Line 11 to Line 13, we need to check if v satisfies
the matroidal deployment constraint M = (V,I). If so, v is
added to the solution set S as S ← S ∪ {s}. Otherwise, the
next round will be started. Meanwhile, Z is updated to store
the checked decision factor v as Z ← Z ∪ {s}. The iteration
will be finished when every decision factor in V is checked
against the constraint M = (V,I).

If we define the optimal deployment policy of the intermit-
tent deployment problem as S
 with respect to the predicted
variance set �̄, we then have the following result.

Theorem 1 ([63]): The optimality ratio of the greedy
solution S generated by Algorithm 1 has the following
performance:

f (S) ≥ 1

|M| + c f
f
(
S


) = 1

2+ c f
f
(
S


)
,

where c f is the curvature of f (·), |M| = 2 is the cardinality
of the matroid intersection constraint, and S
 is an optimal
solution.

The above result gives our problem a lower bound of
algorithm Algorithm 1. Note that the curvature of the objective
function f (·) can be evaluated by checking the contribution
of every decision factor v from the ground set V as shown in
Definition 2. Therefore, by using the proposed Algorithm 1,
we can get an intermittent deployment policy using the pro-
posed method while having a performance guarantee, as shown
above.

Remark: The proposed pipeline can also be implemented
in a receding horizon manner. That is, based on the proposed
deployment policy S, the new robot measurements from a
series of deployments can be integrated into the historical
dataset X to refine the learned network �(·). Therefore,
we can produce better predictions (Ȳt , σ̄

2
t ) and thus improved

plans S for the future.

VII. PASTURE CONSTRUCTION AND PERCEPTION

When we have a synthesized pasture, we need a repre-
sentation of what aerial robots with LiDAR would measure.
Thus, based on our synthesized data, we simulate a realistic
pasture environment and LiDAR measurements in Gazebo.
This high-fidelity pastureland simulation environment will
help us to understand the effectiveness of the simulated
process. In this section, we will first focus on constructing
pasture environments from the simulated data and then on the
height estimation using LiDAR measurements.

A. Pasture Construction

In this work, we simulate a 10m × 10m pasture
using 2.5 × 104 grass models. We set the size of the
simulated pasture and the density like this when considering
the computational complexity. First, we randomly pick
2.5 × 104 locations from this pastureland environment.
We then assign a 3D grass model to each sampled location.
The heights of grass models correspond to the heights at the
same locations in the smooth 3D surfaces. To accelerate the
simulation speed and lower the computational requirement,
we divide the pasture into 25 small patches (2m × 2m per
patch). In each patch, the density is 250 grass models per
square meter with a total of 1 × 103 models per small
patch. In this small patch, we use five species of plants to
simulate different growth patterns as shown in Fig. 4. This
selection will be validated later in the experimental section
as the actual measurements look similar to our simulated
environment. Each plant is spawned at the same randomly
chosen coordinates throughout our simulation. We rescale a
grass model in each dimension for each randomly selected
location according to the desired height on the 3D surface.
The flowchart of our pasture construction is shown in Fig. 4.

B. Pasture Perception

To estimate the height of the pasture, we use a UAV
equipped with a LiDAR to collect point clouds over the
pasture. Meanwhile, we need post-processing to remove noise
after getting the point clouds. Those extra points are not part
of the simulated field and need to be removed. To achieve this,
we use crop box filters to remove the extra points and retain
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the points of the 10m × 10m pasture as well as the points in
the perimeter around it.

The height of a point cloud includes two parts: the height
of the pasture and the height of the ground plane. To get
the estimated height of the field, we use the mowed-down
perimeter to estimate the ground plane. First, we have the
following assumption of the ground of the environment.

Assumption 1 (Ground Plane): We assume that the ground
of the pastureland is a plane in this paper. However, we will
also introduce some methods that can be used to tackle other
cases in the followings.

In the simulation, we use this assumption to facilitate the
ground height estimation. However, other types of ground
can also be integrated into our simulation framework, where
we can use more sophisticated methods for ground surface
regression.

In this work, we use the least squares method to compute
the height of the ground by using perimeter points. The
perimeter is all the points surrounding the target plot area.
These perimeter points will be used to estimate the ground
plane that is used for height estimation. An equation for a
plane can be defined as shown below.

Ax + By + Cz + D = 0. (9)

where A, B, C , and D are the parameters defining the plane.
Without loss of generality, we assume C = 1.

We denote by pi = [xi , yi , zi ]� ∈ R
3 the location of i th

point in the perimeter. Since we are solving for a best-fit plane
of multiple points, a least square form of our formulation can
be written as⎡

⎢⎢⎣
x1 y1 1
x2 y2 1

. . .
xP yP 1

⎤
⎥⎥⎦

⎡
⎣ A

B
D

⎤
⎦ = −

⎡
⎢⎢⎣

z1

z2

. . .
zP

⎤
⎥⎥⎦,

where P is the total number of points in the perimeter.
To perform the linear least squares test, we multiply a

transpose of the left-most matrix on both sides. Note that
we will use

∑
xi xi as

∑P
i=1 xi xi for simplicity. This notation

will also be applied to other relevant terms. Then the above
equation is simplified as⎡

⎣
∑

xi xi
∑

xi yi
∑

xi∑
yi xi

∑
yi yi

∑
yi∑

xi
∑

yi P

⎤
⎦

⎡
⎣ A

B
D

⎤
⎦ = −

⎡
⎣

∑
xi zi∑
yi zi∑
zi

⎤
⎦.

Defining all points, i.e., pi = [xi , yi , zi ]�, relative to the
plane centroid sets the summations of the individual compo-
nents to 0 and simplifies the above equations. The centroid
of the plane is calculated by using o = P−1 ∑P

i=1 pi ∈ R
3.

Note that P �= |P |. Then, all the points in the perimeter are
updated as [xi , yi , zi ]� ← [xi , yi , zi ]�−o. The above equation
can then be simplified as⎡

⎣
∑

xi xi
∑

xi yi 0∑
yi xi

∑
yi yi 0

0 0 P

⎤
⎦

⎡
⎣ A

B
D

⎤
⎦ = −

⎡
⎣

∑
xi zi∑
yi zi

0

⎤
⎦.

Fig. 5. (a). The average height of the pastureland environment in 30 years
(represented by 30 lines). The x-axis represents the day of the year. The y-axis
represents the corresponding average height. (b). The mean and the standard
deviation of each day’s height are calculated using historical data.

From the last row, we observe that D = 0 since P �= 0.
Therefore, this equation can further be simplified as[∑

xi xi
∑

xi yi∑
yi xi

∑
yi yi

][
A
B

]
= −

[∑
xi zi∑
yi zi

]
.

Using Cramer’s rule, we get A and B as follows.

A =
(∑

yi zi ×
∑

xi yi −
∑

xi zi ×
∑

yi yi

)
/�,

B =
(∑

xi yi ×
∑

xi zi −
∑

xi xi ×
∑

yi zi

)
/�, (10)

where

� =
∑

xi xi ×
∑

yi yi −
∑

xi yi ×
∑

xi yi .

Therefore, the ground plane is fully defined, and the actual
height of the pastureland can be adjusted accordingly.

VIII. EVALUATION

In this section, we demonstrate the results of each com-
ponent in our pipeline. The historical data is generated using
Matlab. The pasture is simulated by using Blender. The neural
network training was conducted with a PyTorch backend on
2x AMD Epyc 7742 CPUs and a multi-GPU training regime
with 8x Nvidia RTX 6000 GPUs.

A. Training Data Preparation

In this section, we focus on preparing training data. Based
on historical meteorological data from a site in Iowa, we sim-
ulate 30 years of tall fescue pasture dry matter production.
Specifically, we will use the first 28 years of data for training
and reserve the last year’s data for testing purposes. In Fig. 5,
we demonstrate the statistics of the historical data. Fig. 5(a)
shows the average height change of the simulated pastureland
environment, where each line denotes the height change for
different days in a year. We also calculate each day’s mean
and standard deviation using the historical data as shown in
Fig. 5(b).

The simulated pasture yield was then used to generate
average pasture height data based on the model in [7] describ-
ing the relationship between pasture green dry matter and
LiDAR-measured pasture height for each day. Following the
pastureland generation procedure described in Section IV-B,
we generate a 2D pastureland environment over 28 years using
a dynamic GMM. In the simulation, we use B = 7 basis
functions. The random initial settings of the basis function
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Fig. 6. A simulated pastureland 10m × 10m environment using
2.5 × 104 grass models.

TABLE I

THE LOCATIONS, LENGTH-SCALES, AND INITIAL WEIGHTS OF

DIFFERENT BASIS FUNCTIONS

location (x, y), the length-scale ci , and the initial weight wi

of each basis function bi(x, y) are shown in Table I. Later on,
in our experimental section (Section VIII-E), we can see that
those parameter settings can help us to simulate pastureland
environments that are very close to the real-world scenario.

B. Point Cloud Testing Data Preparation

In this section, we focus on preparing the testing data.
To test the performance of proposed pipeline, we simulate
an actual 10m × 10m pasture (Fig. 6) in Gazebo using the
method proposed as illustrate in Fig. 4. The selected pasture
size, i.e., 10m × 10m, is a result of careful consideration of
the computational speed and complexity of the entire process.
We will then collect data from this simulated actual environ-
ment to test the prediction and deployment performance.

To further exploit parallelization computation to improve
the simulation speed, we divide the pasture into 25 small
2m × 2m patches. For each patch, we use 1 × 103 grass
models (250 models per square meter). Finally, 25 small
patches are attached to form one large 10m × 10m pastureland
environment.

We randomly assign grass models and extrude the model
in three dimensions to match the predefined height for the
model in that location. As the swards of the grass grow with
a curvature, we need to adjust the location of the base of
each grass model, i.e., the location of each grass model at
the ground plane to match the location of its sward at its
highest point. This offset allows us to calculate the vertical
height of each individual plant directly. Specifically, denote by
γ ∈ R the scaling factor of a grass model, which is calculated
by comparing the desired height of a grass model and the
original height. We denote m = [mx, m y]� ∈ R

2 the original
2D location of the topmost point, and ξ = [ξx , ξy]� ∈ R

2 the
offset of the topmost point, where ξx , ξy ∈ R are the offset in x
and y direction. We apply a shifting process as m← m−γ ·ξ
to ensure that the topmost point is at the predefined location.
After this adjustment, the 2D location of the topmost point of
a grass model is transformed to the predefined 2D location.

Following the steps described in Section VII, we generate
15 pastureland environments in Gazebo using the historical
data with a day interval of δ = 4. An example illustrating the
simulated pastureland environment (10m × 10m) is shown in
Fig. 6. In this simulated pastureland environment, there are
2.5 × 104 grass models.

Next, we use a robot to collect a point cloud for each
simulated environment. The simulated LiDAR has an inherent
standard deviation of 4mm in its readings. We also assume
the ground of the field is flat. Nevertheless, adding different
terrains to simulate different types of ground is easy. During
the simulations, the plant locations, pose, and species for a
particular location in the pasture are fixed throughout the years
to accelerate those processes. Finally, all the collected point
clouds will be used as testing inputs.

C. Neural Network Training and Prediction

In this section, we focus on the following two different parts
of our neural network.
• We first give details of our training settings based

on training data generated from GMM, as stated
in Section VIII-A.

• We then test the performance of the networks based on
two different types of testing inputs.

Training: Based on the generated GMM data from
Section VIII-A, the training sequences Xi ’s are generated
by setting the number of measurements in each sequence as
α = 15. Also, the number of intervals is δ = 4. We use early
stopping, where training is stopped if validation loss does not
improve for ten epochs, usually resulting in 30 training epochs.

Testing: We evaluate the performance of the prediction
network in two different cases:

1) In the first testing case, we use one group of point cloud
measurements as testing inputs and another group of
point cloud measurements as testing outputs. This testing
case can help us understand the theoretical prediction
performance.

2) In the second testing case, we use two groups of GMM
data as testing inputs and outputs. This testing case can
help us understand the practical prediction performance.

1) Testing by using point cloud measurements: We note that
due to the computationally intensive process of constructing
the aforementioned pastures and their subsequent point cloud
measurements, we only generate a single test case consisting
of 30 days, where the data is split into 15 days as an input
sequence to the prediction network, and the remaining 15 days
are used to evaluate the prediction performance. The collected
point clouds will be first converted to heightmaps of size
100 × 100 as the original point clouds are too large to be
used as network prediction inputs. Meanwhile, we need to
process those heightmaps since the measurements are noisy.
In Fig. 8, we demonstrate a downsampled surface of the point
cloud shown in Fig. 7. Specifically, after downsampling, the
processing includes two steps: (a). a size of 3 × 3 median
filtering; (b). a size of 3 × 3 flat convolution filtering. After
processing, we see that the growth pattern of the pastureland
is visible as shown in Fig. 9(b) when compared with the raw
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Fig. 7. The corresponding point cloud of the pasture (10m × 10m) shown
in Fig. 6.

Fig. 8. The downsampled surface of the point cloud shown in Fig. 7.

map as shown in Fig. 9(a). Those processes make the neural
networks’ prediction of pastureland dynamics more efficient.
Meanwhile, this processing only has a mild change on the
original data, as can be seen from the histogram comparison
in Fig. 10.

To test the prediction performance, we predict the
heightmaps for another 15 days using a stride length of
δ = {1, 4}. The longest effective horizon for those two are
L = 15 and L = 60 respectively. Then, we generate the
corresponding point cloud measurement to check the testing
performance. To estimate the uncertainties, we set the number
of MC dropout samples as K = 500. In general, our network
performance on average performs within a 12% error rate
in the worst case when δ = 4 and L = 60, and within a
5% error rate when data is available more frequently when
δ = 1 and L = 15. To further demonstrate the details of
our long-time horizon prediction results, we show the 5th
and 15th prediction results with their ground truth in Fig. 11.
Note that the effective time horizons for those two predictions
are L = 40 and 60 days. The uncertainty estimations in
terms of standard deviations of the predictions run over
K = 500 samples. We observe that the network has higher
confidence at the highest pasture heights since it is easier to
learn feature mappings due to more significant correlations
within its neighborhood. The prediction error is lowest at
the highest points in the pasture since the network learns to
estimate the peak points with higher confidence.

In Fig. 12, we compare the ground truth and the cor-
responding predictions using all the predictions across the
output sequence. From the result, we can see that most
prediction-ground truth pairs lie in the 45 degree line, where
we can observe that most predictions are close to the ground

Fig. 9. The downsampled heightmaps of the point cloud shown in Fig. 7.

Fig. 10. The histogram comparison of the two heightmaps shown in Fig. 9.

truth. The prediction uncertainty of the model increases as
the prediction error increases, as shown in Fig. 13, showing
a clear correlation between the network’s confidence against
the prediction errors. This reiterates the suitability of the
computationally efficient Bayesian approximation for uncer-
tainty estimates, allowing a quick and efficient turnaround in
prediction. This methodology reduces the need for expensive
hardware for training and inference of the deep learning-based
prediction model and allows even small industries or farms to
tune and integrate the prediction systems into their workflow.

Remark: The network makes predictions from point cloud
measurements in the above tests, and the original training
dataset of pasture height maps generated from GMM is not
used. That indicates the ability of our network to generalize
beyond the simulated training data to real-world applications
by using LIDAR-based measurements.

2) Testing by using GMM data: Next, we use Monte Carlo
simulations to test the prediction performance using different
GMM inputs. Note that the training model is unchanged in
this case. We set |Ty| = α = 15. That is, we use a length
of 15 heightmaps to predict another group of 15 heightmaps.
Since we will test the performance using two years’ data
and the first 15 heightmaps can only be used as inputs,
the number of distinct output prediction sequences is H =
(365−|Ty|)·2. We should also note that K in (4) is the number
of samples used for calculating one prediction Ȳt ,∀t ∈ Ty .
We evaluate the performance of the neural network predictions
with the following metrics: Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and Averaged Standard Deviation (ASTD).

RMSE =
√√√√ 1

H · ∣∣Ty

∣∣
H∑

h=1

∑
t∈Ty

(
Y(h)

t − Ȳ(h)
t

)2
,
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Fig. 11. The comparison between deep learning predictions and the corresponding ground truth. The first row is for α = 5 prediction (the effective horizon
is 40 days), and the second row is for α = 15 prediction (the effective horizon is 60 days). The comparisons include predicted mean, predicted standard
deviation, and the prediction error for every location.

MAE = 1

H · ∣∣Ty

∣∣
H∑

h=1

∑
t∈Ty

∣∣∣Y(h)
t − Ȳ(h)

t

∣∣∣,
MAPE = 1

H · ∣∣Ty

∣∣
H∑

h=1

∑
t∈Ty

∣∣∣∣∣Y(h)
t − Ȳ(h)

t

Y(h)
t

∣∣∣∣∣,

ASTD =
√√√√ 1

H · ∣∣Ty

∣∣
H∑

h=1

∑
t∈Ty

(
σ̄

(h)
t

)2
,

where H is the batch size of the output prediction. For
simplicity, we omit the superscript h on Ty and note that the
discrete time intervals t for the output predictions can differ
for each batch sample.

The results of these metrics are reported in Table II,
containing the results from the above two testings. These
metrics quantify the performance of the prediction algorithm
by aggregating the errors and uncertainty over the discretized
values of the pasture.

D. Robotic Deployments Results

In this section, we use Monte Carlo simulations to test the
performance of the proposed integrated pipeline. Specifically,
we have two goals for the testing:

1) Deployment strategy comparison: we want to test the
effectiveness of the proposed pipeline using the same
neural network prediction results but with different
deployment strategies.

2) Pipeline comparison: We want to test the effectiveness
of the proposed pipeline, i.e., neural network prediction
and intermittent deployment, with another often used
pipeline.

In the followings, we will first specify the details of the
comparison settings and then demonstrate the comparison
results for each testing scenario.

Fig. 12. The relationship between the ground truth and the corresponding
prediction by using all the predictions and the ground truth. The x-axis
represents the ground truth of every point, and the y-axis represents the
corresponding prediction result. The marginal histograms show the statistics
of the ground truth and the prediction independently.

Fig. 13. The relationship between the prediction error and the corresponding
prediction standard deviation of every location by using all the predictions.

1) Deployment Strategies Comparison: Based on the same
deep learning prediction result, we compare the performance
using the following deployment policies:
• Intermittent: the intermittent deployment policy, where

the policy is generated through the method proposed
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TABLE II

ACCURACY METRICS (IN mm) FOR DIFFERENT METHODS WITH AND WITHOUT UNCERTAINTY ESTIMATES (UE), WHERE THE STRIDE LENGTH IS
δ = {1, 4} AND THE CARDINALITY OF HORIZONS SET IS α = 15∗

Fig. 14. The utility statistics of the three methods after running 50 trials.
The proposed intermittent deployment method has the highest average utility.

in Section VI. We refer to this deployment policy as
“Intermittent”.

• Heuristic: a heuristic deployment policy, which is used
to mimic how humans manually monitor pasturelands
on spatial and temporal scales. On the temporal scale,
the robots are deployed within a fixed time interval.
For example, if the planning horizon is 9 days and the
robot team can only be deployed 3 times, then those
robots will be deployed at 1st day, 5th day, and 9th
day. On the spatial scale, the deployment locations are
evenly distributed across the pastureland. This spatial
strategy simulates the case where each robot has the same
coverage ability, and they are deployed to the locations
where the overall coverage is maximized. We refer to this
deployment policy as “Heuristic”.

• Random: a random deployment policy, where both
deployment times and locations are randomly selected
from the ground set V . We refer to this deployment policy
as “Random”.

We first evaluate the performance using the collected reward
(the objective function value). Then, we collect samples based
on the generated deployment policies. After that, we use the
collected information from different methods to make 10 more
predictions. We finally compare the prediction performance of
those methods. Thus, those steps will help verify the proposed
pipeline’s effectiveness.

Based on the α = 15 deep learning prediction results,
we run 50 Monte Carlo simulations to generate different
deployments under different settings. The settings are as
follows. The maximum number of deployable days (total
budget) � is randomly sampled from the set {5, 6, . . . , 12}. The
number of maximum sampling points �t is sampled from the

Fig. 15. (a). The comparison of the collected uncertainties of three different
methods, which is the first part of the objective function. (b). The waiting
penalty of three different methods, which is the second part of the objective
function.

set {22, 32, . . . , 82}. The cardinality of the planning horizon is
|Ty| = 15. We also assign each robot a random weight for the
same traveling cost to simulate the heterogeneity. In each run,
we generate one instance and then use the above three methods
to compare the performance. Also, the number of robots is set
to �t · � for each instance. The weights for distance and time
are w2 = 0.1, w3 = 1. And the weight for time penalty is
w1 = 5. The definitions of those parameters can be found in
our problem formulation in Section III-B.

Then, we first compare the results of different deployment
policies by comparing the collected reward of each method
after running 50 trials. The result is shown in Fig. 14, where
the proposed intermittent policy has the highest averaged
utility. Then, in Fig. 15, we demonstrate the two different
parts of the objective function. In Fig. 15(a), we show the
collected uncertainty of three different deployment methods,
which is the first part of the objective function. In Fig. 15(b),
we compare the waiting penalty part in the objective function.
Then, in Fig. 16, we set a high waiting penalty as w1 =
10 while keeping w2, w3 the same as before. Again, we run
other 50 trials to compare the performance. In Fig. 16, the
values of different parts in the objective function prove that
our proposed method can collect more rewards while having
less waiting penalty. Similarly, in Fig. 17, we compare the
result from each part of the objective function using three
different deployment policies. This finishes up the first part
of this comparison. In Fig. 18, we demonstrate a deployment
result using one setting instance. In this result, we set the
parameters as follows. The maximum number of deployments
for each day is set to �t = 4, and the maximum number of
deployable days is set to � = 3.

Next, we use robots to collect data based on the generated
deployment policies. The collected height information will be
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Fig. 16. The utility statistics of the three methods after running 50 trials
when the waiting penalty weight w1 is high.

Fig. 17. The utility/cost of different parts of our objective function when
the waiting penalty weight w1 is high.

TABLE III

THE AVERAGED PREDICTION COMPARISONS (IN mm) BETWEEN THE DEEP

LEARNING (DL) BASED METHOD AND THE GAUSSIAN PROCESS (GP)
FOR α = 5 AND α = 15

used to update our knowledge of the environment. Finally,
we compare the predictions from each method using this
updated information. Note that white noise is also added to
simulate measurement noise. Specifically, we use the collected
information to make another 10 more predictions, i.e., from
α = 1 to α = 10, with the size of interval of δ = 2. For each
prediction, we compare it with the ground truth. Then, the final
averaged prediction error is shown in Fig. 19. The averaged
prediction error is calculated by averaging the prediction errors
from all locations. Since we run the simulation 50 trials, there
are 50 different averaged prediction errors for each method
shown in Fig. 19. After using the updated information from
different methods, we see that the proposed pipeline has a
lower average prediction error than the other two methods.
That demonstrates the effectiveness of the proposed method.

2) Pipelines Comparison: In the paper, the deployment
strategies are made based on the predicted variance map.
However, as the deployment problem itself is an NP-hard
combinatorial optimization problem, there is no simple way to
get an optimal deployment strategy based on any prediction
result. In the paper, we adopt a commonly used mutual
information-based pipeline in the second comparison cate-
gory and compare it with our proposed pipeline. Specifically,
we will use a 2D Gaussian process (GP) to model the
environment and make predictions. We then use the proposed
intermittent deployment idea to make deployment strategies
based on the different prediction results. Again, we finally

TABLE IV

THE STATISTICS OF THE AVERAGED PREDICTION ERRORS OF THE PRO-
POSED DEEP LEARNING (DL) BASED PIPELINE AND THE GAUSSIAN

PROCESS (GP) BASED PIPELINE USING 50 TRIALS

make another 10 future predictions after deployments to test
the performance.

In this comparison, we first use GP to make predictions.
The settings of this GP are as follows. The training dataset
is from the point clouds generated in Gazebo as described
in Section VII. We also need to convert those point clouds
into heightmaps. We denote the training inputs of the GP by
@t = [x, y, t] ∈ R

3. The training outputs are corresponding
grass height of location (x, y) at time t . From the above
15 heightmaps, we randomly pick 1 × 103 points across all
those heightmaps to form the training set. Since GP is a non-
parametric method, we select kernels as follows. The mean
kernel is defined using the historical mean data as shown in
Fig. 5. The covariance kernel is a composite of a 2D Gaussian
covariance kernel and a 1D linear covariance kernel with noise
term. The Gaussian covariance kernel is similar to the one
shown in (3). Then, those two covariance kernels are summed
up to form the final covariance kernel. In Fig. 20, we show
two prediction results when α = 5 and α = 15. We notice that
the proposed deep learning-based method can maintain more
details than the GP-based predictions. We also include the
comparison details of those two comparisons in Table III. Note
that the comparison is based on the averaged prediction errors.

Next, we use the proposed intermittent deployment method
to select measurement locations based on the mutual informa-
tion while respecting the proposed constraints (7) and (8). Note
that the mutual information matrix is built on all the available
locations at different times. The parameters and the settings
are the same as described in the first comparison. We then run
50 trials using those settings to generate different deployment
policies. Since the mutual information-based method requires
a full covariance matrix for the deployment ground set V ,
which is extremely computationally expensive, we choose
to reduce the original 100 × 100 deployable locations to
10 × 10 deployable locations. Based on the deployment
result of each trial, the training set is updated using the new
measurements from the deployments. After that, we make
predictions for the next 10 steps. Therefore, the performance
comparison between the mutual information and GP-based
pipeline and the proposed DP-based pipeline is based on the
newly updated prediction results. In Fig. 21 and Fig. 22,
we demonstrate the averaged prediction error of each pipeline.
Also, the statistics of this comparison are shown in Table IV.

E. Perception Results

In this section, we demonstrate the result from a field
experiment to illustrate the effectiveness of our simulated
pastureland environment.

We experimented at Virginia Tech’s Turfgrass Research
Center to test our growth analysis algorithm. A 10m × 10m
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Fig. 18. An example of deployment policies generated by different methods. (a)-(c). random, (d)-(f). heuristic, (g)-(i). intermittent. Those are predicted
variance maps.

Fig. 19. The comparison of the averaged prediction error by calculating the
mean of the errors at each location using 50 trials.

region of the Turfgrass center was reserved, and the grass
was grown. It was untouched over time, but the perimeter
around it was consistently mowed down. A DJI M600 UAV
with a bottom-facing Velodyne VLP-16 3D-LiDAR, as shown
in Fig. 23, was flown over the region. The localization
information and LiDAR scans during flights were collected
using an onboard NVIDIA Jetson TX2. This data was used
to build a point cloud map of the region using a similar
technique to the one used in the point cloud generation for the

simulation discussed previously. These flights were conducted
weekly to get temporal point cloud maps of the region. Manual
measurements of the region were also collected. Nine spots
throughout the region were used as the manual measurement
points. These were averaged to get the manual measurements
shown in Table V.

The distance between every point in the region’s point
cloud and the ground plane was computed to estimate the
height of these points. This was done using the normal vector
determined using the method described Section VII. Because
the vast majority of LiDAR points were not at the very top
of the grass, the height estimations using this method were
under-estimations regardless of which percentile we looked
at. This is shown in Table V, and the result is shown in
Fig. 24. However, since growth is what we are looking into,
we can look at the relative differences in the estimations
between each flight. These differences are shown in Table VI
with the first row showing the manually measured growth
between sampling weeks. With perfect estimations, the percent
difference between the manual measurements and estimated
height would be 0%. However, our best results were found
using the 99th percentile of growth estimates which had
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Fig. 20. The comparison between the ground truth and the predictions by using deep learning (DL) based method and Gaussian process (GP) based method.

TABLE V

TURFGRASS EXPERIMENT HEIGHTS

Fig. 21. The averaged prediction errors using Gaussian process (GP) and
mutual information-based pipeline after 50 trials.

an average percent difference of 7.9% compared to manual
measurements.

Those real-world experiments shown above validate our
pasture simulation regime and thus our evaluation results.
Meanwhile, the point cloud results from the real-world experi-
ments are close to the results in our simulated world. All those
results demonstrate the effectiveness of our proposed pipeline.

Fig. 22. The averaged prediction errors using the proposed deep learning
(DL) based pipeline after 50 trials.

Fig. 23. A UAV (DJI M600) mounted with a LiDAR (Velodyne VLP-16)
and an onboard system (Nvidia Jetson TX2).

Finally, we mention some methods that can be used to tackle
the case when the ground is not a plane.

A ground model can be created during the very first flight
of the farm when it has had no growth. Flying the UAV
over the entire farm, we could create a 3D point cloud
map of the environment. Then, we could downsample the
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TABLE VI

TURFGRASS EXPERIMENT GROWTH

Fig. 24. Unprocessed point cloud of 10 × 10 meter Turfgrass plot with the
perimeter. The UAV flew over the generated plot in the simulation. The data
collected from the 3D LiDAR is shown in this figure. The yellow points are
the perimeter around the plot, and the blue/green points are the points in the
plot. With the plot being taller, the points registered were closer. The bluer
the point, the closer it is.

environment map (using a voxel grid filter to average all
points within a voxel) and create a Delaunay triangulation of
this downsampled map. This triangulation gives us localized
ground planes used for height estimations.

If there are parts of the environment that we know will
always be trimmed and each part can be approximated as flat
ground, we could use the proposed approach in Section VII
to estimate both the height of crops and the height of the
ground. In this case, the environment map is broken down into
a grid where each grid cell covers a section of the trimmed
area. Then, a localized ground plane model is found using the
trimmed area to estimate the plane. With this, height estimates
of non-ground points falling within the grid cell are measured
using the localized ground plane.

Also, since we focus on growth (change in height), as long
as the ground model is the same for each flight, we only need
to focus on the relative changes. The relative growth of a
“point” to a ground model will always be the same regardless
of the ground model as long as that ground model does not
change. Therefore, the measured growth will still be accurate
even without a ground height estimation.

IX. CONCLUSION AND FUTURE WORK

In this work, we proposed an integrated pipeline that can be
used for long-term, large-scale forage perception applications.
From the perspective of simulation, we demonstrated how to
simulate large pastureland environments reasonably fast using

parallel processing. From the perspective of pasture prediction,
we proposed a new deep learning architecture that can be
used for long-term pasture predictions. From the perspective
of perception, we demonstrated how to get accurate pasture
height estimation through regression. From the perspective
of autonomy, we combined predictions and an intermittent
deployment policy to deploy robots with high accuracy while
at a low cost.

This work resulted in novel approaches from the initial
data-generating to the final deployment testing. The proposed
pipeline offers a promising and cost-effective alternative to
real-life experiments and can be used as a platform for other
testings.
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